
Terminal Editors
For

Ruby Core Toolchain

Terminal Editors
For

Ruby Core Toolchain

ITOYANAGI Sakura
RubyKaigi 2019 Fukuoka

Powered by Rabbit 2.2.1 and COZMIXNG

Greeting

Hello, everyone!

Greeting

Welcome to Fukuoka, Japan!

Let me introduce myself

I'm

a RDoc maintainer

a Ruby committer

a member of Ruby core
team

Let me introduce myself

I'm so tired because this is
first session just after keynote.

Let me introduce myself

Dark green area is Kyushu

Let me introduce myself

RubyKaigi venue is Fukuoka

Let me introduce myself

I was born at Nagasaki

Let me introduce myself

How strange shape the arrows are

Let me introduce myself

Both are almost the same culture
area

Let me introduce myself

 Both eat tonkotsu ramen

Let me introduce myself

Black Mont Blanc

Let me introduce myself

This is the greatest soul food of
Kyushu people

Let me introduce myself

White ice cream is covered black
chocolate and crunchy chips in

perfect balance

Let me introduce myself

All children in Kyushu are raised
on Black Mont Blanc and

everyone love it, Black Mont
Blanc is nice so Kyushu is nice

Community: Asakusa.rb

Asakusa.rb is holding every
Ruby Tuesday

Community: Asakusa.rb

Many speakers of RubyKaigi
2019 are from Asakusa.rb

Company:
Space Pirates, LLC.

image
src = space-pirates-logo.svg
relative-height = 70
caption = Space Pirates, LLC.
relative-padding-top = 0
relative-padding-bottom = 0
relative-padding-right = 0
relative-padding-left = 0

Company:
Space Pirates, LLC.

image
src = space-pirates-logo.svg
relative-height = 70
caption = I'm an Elasticsearch specialist in this company
relative-padding-top = 0
relative-padding-bottom = 0
relative-padding-right = 0
relative-padding-left = 0

Company:
Space Pirates, LLC.

image
src = space-pirates-logo.svg
relative-height = 70
caption = I don't know Elasticsearch but I'm using kind of go with the mood
relative-padding-top = 0
relative-padding-bottom = 0
relative-padding-right = 0
relative-padding-left = 0

Hobby: climbing

And, my hobby is climbing.

Hobby: climbing

I always go climbing when
Ruby conferences.

Hobby: climbing

But I got an injured TFCC by hard training

Hobby: climbing

Camp in a gorge at last weekend

Hobby: climbing

It's a prosthetic finger for climbing

Hobby: climbing

Climbing with prosthetic finger

Hobby: climbing

Camp in a gorge at last weekend

Hobby: climbing

Camp in a gorge at last weekend

Hobby: climbing

This type of injury has so hard
problem, it's "I can't turn my
humerus".

Hobby: climbing

It's natural position of humerus

Hobby: climbing

It's typing position of humerus

Hobby: climbing

"I can't turn my humerus"

vs

Typing position with turning
my humerus

Hobby: climbing

I'm still getting over the injury
and I've gotten a lot better
now.

Hobby: climbing

But I couldn't turn my
humerus in the early days. It
is effectively sentencing a
programmer to death.

Hobby: climbing

In the severe situation, I felt I
had to choose.

Hobby: climbing

I should:

make a keyboard

make an editor

Hobby: climbing

I should:

make a keyboard

make an editor

Terminal
Editors

For
Ruby Core
Toolchain

Terminal Editors
For Ruby Core Toolchain

First, I got...

Terminal Editors
For Ruby Core Toolchain

TFCC injury

GNU Readline

Ruby has one big problem
when installing, it's about GNU
Readline.

GNU Readline

GNU Readline is a line editor
software. For example, you
always use it on shell.

GNU Readline

Ruby has readline standard
library, and it's based on GNU
Readline as a native library.

GNU Readline

If you build and install Ruby
without installing GNU
Readline as a linkable files:

GNU Readline

readline stdlib is nothing

Only "input" and
"backspace" are available
on IRB

Pry fails to launch

GNU Readline

It's a very sad situation and a
hard trap for beginners.

GNU Readline

And user including me needs
to re-build Ruby, it means I
need to type keyboard more.

GNU Readline

It's worst case for my wrist

GNU Readline

So I started to develop a GNU
Readline compatible library by
pure Ruby for Ruby core.

GNU Readline

I had a plan to explain
terminal technologies in this
session but now...

GNU Readline

Now, an unprecedented boom in
text editor.

GNU Readline

You can listen to terminal
techniques in this session
tomorrow.

GNU Readline

I developed Reline what is as
a GNU Readline
(almost)compatible library by
pure Ruby.

GNU Readline

Reline's development policies
are:

complete developing as
soon as possible

because GNU Readline has
insanely many features

GNU Readline

Reline's development policies
are:

Windows support by Win32
API

because it's best way to
support Windows

GNU Readline

Therefore Reline uses:

ANSI escape code on Unix
like OSs

Win32 API on Windows

GNU Readline

Therefore Reline uses:

ANSI escape code on
Unix like OSs

Win32 API on Windows

ANSI escape code

ANSI escape code is a
standard specification to
control the cursor location,
color, and other options on
terminal.

ANSI escape code

If a terminal supports ANSI
escape code, softwares control
unified escape code.

ANSI escape code

Example:

puts "\e[31mred"
puts "\e[32mgreen"
puts "\e[34mblue"

ANSI escape code

Example:

puts "\e[31m" + "red"
puts "\e[32m" + "green"
puts "\e[34m" + "blue"

ANSI escape code

Example:

puts "\e[31m" + "red"
puts "\e[32m" + "green"
puts "\e[34m" + "blue"
^color spec ^text

ANSI escape code

Output should be like this

ANSI escape code

Example:

print "\e[#{num}A"
Cursor Up
print "\e[#{num}B"
Cursor Down

ANSI escape code

Example:

print "\e[2K"
Erase in Line

ANSI escape code

But ANSI escape code has
some problems:

there aren't many things to
be able do

some escape sequences
are very slow grievously

ANSI escape code

For example,

print "\e[6n"
Device Status Report

is very slow.

ANSI escape code

If software uses Device Status
Report so many times, it
should slower by the by.

ANSI escape code

So terminal software with
ANSI escape code should be
devised within limited
operations.

GNU Readline

Reline uses:

ANSI escape code on Unix
like OSs

Win32 API on Windows

Win32 API

Fiddle what is for calling
functions inside .dll or .so
dynamic libraries is only one
solution for supporting Win32
API.

Win32 API

This is "Console Functions"
page URL of Win32 API.
↓↓↓
https://docs.microsoft.com/en-us/windows/console/console-functions

Win32 API

"Console Functions" is enough
to do that the same of ANSI
escape code.

Win32 API

GetStdHandle() for console handle

SetConsoleCursorPosition() is
for cursor up and down

GetConsoleScreenBufferInfo() is
for cursor position

blah blah blah

Hard work

It was so hard work to
complete.

Hard work

So I always do programming,
on a desk, on a bed, in trains,
in a bathroom, in a toilet...

Hard work

Sometimes I use computer on the floor

Hard work

I got right anterior cruciate ligament injury

Hard work

I got right anterior cruciate ligament injury

Unicode support

Multibyte characters of
Unicode has so complex
specifications:

Unicode support

combination plural bytes to one character

combination plural characters to one
grapheme cluster

character width depending on the
situation

blah blah blah

Unicode support

combination plural bytes to one
character

combination plural characters to one
grapheme cluster

character width depending on the
situation

blah blah blah

I'll omit to explain these 2
specs because of too complex.

Unicode support

combination plural bytes to one character

combination plural characters to one
grapheme cluster

character width depending on the
situation

blah blah blah

Unicode support

Some Unicode characters'
width are changed by the
situation, for example Cyrillic
alphabet.

Unicode support

I'll show 2 gnome-terminal
screenshot.

Unicode support

"Д" as a single width character

Unicode support

"Д" as a double width character

Unicode support

Both are the same strings, but
changed width of "Д"

Unicode support

The behaviour is based on
terminal software settings

Unicode support

How to resolve:

show in actuality and check
width and...

delete it before user
awakes, in an eye's blink

Terminal
Ninja!

Unicode support

Vim has a function,
may_req_ambiguous_char_width(),
the comment of it says...

Unicode support

First, we move the cursor to (1, 0)
and print a test ambiguous character
\u25bd (WHITE DOWN-POINTING TRIANGLE)
and query current cursor position.

COOLEST
TECH

IN
2019

Unicode support

New headache comes, it's killing me

Unicode support

I ported it to Reline. Coolest
software.

Line editing implementation

Next, let me implement line
editing features to Reline.

Line editing implementation

These are key assigned
operations...

Line editing implementation

operation method list
ed_insert(key)

ed_quoted_insert(str, arg: 1)

ed_next_char(key, arg: 1)

ed_prev_char(key, arg: 1)

ed_move_to_beg(key)

ed_move_to_end(key)

ed_prev_history(key, arg: 1)

ed_next_history(key, arg: 1)

Line editing implementation

Oh, list is cut off in the
middle...

Line editing implementation

operation method list(smaller)
ed_insert(key)

ed_quoted_insert(str, arg: 1)

ed_next_char(key, arg: 1)

ed_prev_char(key, arg: 1)

ed_move_to_beg(key)

ed_move_to_end(key)

ed_prev_history(key, arg: 1)

ed_next_history(key, arg: 1)

ed_newline(key)

em_delete_prev_char(key)

ed_kill_line(key)

em_kill_line(key)

Line editing implementation

Ah...

Line editing implementation

operation method list(smallest)
ed_insert(key)

ed_quoted_insert(str, arg: 1)

ed_next_char(key, arg: 1)

ed_prev_char(key, arg: 1)

ed_move_to_beg(key)

ed_move_to_end(key)

ed_prev_history(key, arg: 1)

ed_next_history(key, arg: 1)

ed_newline(key)

em_delete_prev_char(key)

ed_kill_line(key)

em_kill_line(key)

em_delete_or_list(key)

em_yank(key)

em_yank_pop(key)

ed_clear_screen(key)

Line editing implementation

Too many

Line editing implementation

operation method list
(smallester)

ed_insert(key)
ed_quoted_insert(str, arg: 1)
ed_next_char(key, arg: 1)
ed_prev_char(key, arg: 1)
ed_move_to_beg(key)
ed_move_to_end(key)
ed_prev_history(key, arg: 1)
ed_next_history(key, arg: 1)
ed_newline(key)
em_delete_prev_char(key)
ed_kill_line(key)
em_kill_line(key)
em_delete_or_list(key)
em_yank(key)
em_yank_pop(key)
ed_clear_screen(key)
em_next_word(key)
ed_prev_word(key)
em_delete_next_word(key)
ed_delete_prev_word(key)
ed_transpose_chars(key)
em_capitol_case(key)
em_lower_case(key)
em_upper_case(key)
em_kill_region(key)
copy_for_vi(text)
vi_insert(key)
vi_add(key)
vi_command_mode(key)
vi_next_word(key, arg: 1)
vi_prev_word(key, arg: 1)
vi_end_word(key, arg: 1)
vi_next_big_word(key, arg: 1)
vi_prev_big_word(key, arg: 1)
vi_end_big_word(key, arg: 1)
vi_delete_prev_char(key)
ed_delete_prev_char(key, arg: 1)
vi_zero(key)
vi_change_meta(key)
vi_delete_meta(key)
vi_yank(key)
vi_list_or_eof(key)
ed_delete_next_char(key, arg: 1)
vi_to_history_line(key)
vi_histedit(key)
vi_paste_prev(key, arg: 1)
vi_paste_next(key, arg: 1)
ed_argument_digit(key)
vi_to_column(key, arg: 0)
vi_next_char(key, arg: 1)
search_next_char(key, arg)

Line editing implementation

GNU Readline features are:

Line editing implementation
emacs mode

kill-ring

yank, yank-pop

vi mode

argumented operations

combination of operation and motion

undo

setting files

key binding

macro

blah blah blah

It means
that I made
almost full
2 editors

Line editing implementation

Demonstration

Multiline
editor

Multiline editor

Today's description of this
session explains about
"Reidline".

Multiline editor

"Reidline" is authored for new IRB by keiju-san who
is Ruby's grandfather, it behaves as a multiline editor
like JavaScript console on browsers.

It had many technical problems but I've already solved
that when I implemented Reline.

So I helped to complete Reidline.

Multiline editor

Therefore, I improved Reline
for Reidline. It supports
multiline a few days ago!

Multiline editor

Stiffness of neck, shoulder, lower back

Multiline editor

There are 3 editors by Ruby

Multiline editor

And, I'm the current RDoc
maintainer. So I added new
feature that shows document
after completion.

Multiline editor

Demonstration

Multiline editor

I started development of
editor for my wrist, but crash
of my body is continued.

Multiline editor

Incredible situation.

Multiline editor

And, at 3rd day of RubyKaigi,
Ruby 2.7.0-preview1 will be
released, with Reline and
Reidline.

Multiline editor

So I should fix all bugs for the
day.

Multiline editor

My body will be gone

Multiline editor

This is my last work of Heisei era

Multiline editor

C'mon, Reiwa era...
Powered by Rabbit 2.2.1 and COZMIXNG

