
Technical Background of
Interactive CLI of Ruby 2.7
Technical Background of

Interactive CLI of Ruby 2.7

ITOYANAGI Sakura
RubyConf 2019

Powered by Rabbit 3.0.0 and COZMIXNG

Greeting

Hello, everyone.

Let me introduce myself

I'm
a Ruby committer

the current RDoc maintainer

a member of Ruby core team

Community: Asakusa.rb

Asakusa.rb every Ruby Tuesday

Company: Space Pirates, LLC.

Space Pirates, LLC.

Company: Space Pirates, LLC.

Our business: We steal money via bank
from venture companies that commission
software development to us.

Company: Space Pirates, LLC.

This company is founded by my friend 2
years ago. Only 5 employees.

Company: Space Pirates, LLC.

...But it supported me as a semi-full time
OSS engineer as a Ruby committer.

Hobby: Climbing

And my hobby is climbing.

Hobby: Climbing

Usually, I go to climbing area before
international conference.

Hobby: Climbing

But this time, I couldn't go to climbing
before RubyConf.

Hobby: Climbing

Because I went to Matsue where Matz is
living to attend the RubyWorld
Conference as a speaker.

Hobby: Climbing

And I told about "adventure".

Hobby: Climbing

Adventure is to go somewhere that
nobody hasn't known the world.

Hobby: Climbing

Nobody understands the value, nobody
knows how can we go there.

Hobby: Climbing

And everyone is living in well-known
comfort zones, but adventure is not.

Hobby: Climbing

Only one week later after the
presentation of the RubyWorld
Conference, I came here. So I couldn't
climb around Nashville.

Hobby: Climbing

But I found a good place to climb near
here.

Hobby: Climbing

It's Puerto Rico.

Hobby: Climbing

world map

Hobby: Climbing

I'm from Japan.

Hobby: Climbing

And it's Nashville. So far.

Hobby: Climbing

Puerto Rico is almost there.

Hobby: Climbing

I'll try to climb unknown and unexplored
area of a jungle of Puerto Rico.

Hobby: Climbing

The word, unknown is important for
adventure.

Hobby: Climbing

I think that adventure means going into
the unknown.

My Adventure In Ruby

Today, I'll talk about my adventure in
Ruby.

My Adventure In Ruby

I'm the current maintainer of RDoc which
is the standard documentation tool of
Ruby.

My Adventure In Ruby

And I'm trying to improve IRB with
documentation.

My Adventure In Ruby

The brand-new IRB has multi-line editings
that is powered by Reline.

My Adventure In Ruby

The multi-line editing feature of IRB was
advocated by keiju-san who is the author
of the original IRB.

My Adventure In Ruby

It's the great vision but it's too hard to
implement because the original IRB is
implemented by GNU Readline.

My Adventure In Ruby

GNU Readline has over 30 years of
histrical background.

My Adventure In Ruby

So Reline needs to be compatible with so
many features of GNU Readline.

My Adventure In Ruby

the history of terminal

GNU Readline compatible features

I18n support

My Adventure In Ruby

the history of terminal

GNU Readline compatible features

I18n support

The History of Terminal

the history of terminal
the Morse code

typewriter

teletype

escape sequence

escape sequence on Unix like OS

Windows support

The History of Terminal

When do you think the terminal's
historical background started?

30 years ago?

60 years ago?

120 years ago?

240 years ago?

The History of Terminal

Most communication technologies are
invented by market of new businesses.

The History of Terminal

Japanese people continues to eat rice
over 10,000 years. It's our soul. Old
Japanese kings treat rice stockpiles as
assets.

The History of Terminal

Back then, rice is a practical currency in
Japan.

The History of Terminal

About 200 years ago, merchant of those
days was in trouble.

The History of Terminal

Rice market has different between east
side and west side.

The History of Terminal

So they needed the soonest
communication technology.

The History of Terminal

Illustration purpose by © 2019 Doom Kobayashi

It's

just

smoke

fullimage

fullimage

The History of Terminal

It's a kind of bit encoded data.

The History of Terminal

Merchants could send rice market
information within 2 hours over 500km.

The History of Terminal

In the same age, telegraph is invented by
William F. Cooke and Charles Wheatstone.

The History of Terminal

It sends code from typed primitive keys
via railway track as a line to a printing
system.

The History of Terminal

Cooke and Wheatstone's five-needle, six-
wire telegraph

The History of Terminal

It's just experimental so it has only
several keys. It's not enough to type
alphabet, so "shift key" is added.

The History of Terminal

It's the "shift key" in early times. It was
1837.

The History of Terminal

After that, Samuel Morse who is famous
Morse code invents telegraph on Morse
code.

The History of Terminal

The system is just Morse code so can
receive generated code from a typed key
or hand inputted code, and can output to
auto printing system or writing
characters via ear.

The History of Terminal

The system continues to be improved, it's
called "teletype".

The History of Terminal

Royal Earl House invented brand new
teletype and it's used for money transfer.
It was 1855. A few years later, The
Western Union Company is founded.

The History of Terminal

But the typing system and printing
system is not convenient.

The History of Terminal

Human beings know more convenient
typing and printing system.

The History of Terminal

It's...

The History of Terminal

Typewriter

The History of Terminal

But typewriter needs "operations of a roll
paper".

The History of Terminal

Typewriters print characters to the same
point but move a roll paper. The protocol
that ups to here doesn't contain
operations of a roll paper.

The History of Terminal

Move left

Move right

Roll a paper(move to next line)

Move to head of line

...

The History of Terminal

Those operations are added to the
protocol.

The History of Terminal

Move left

Move right

Roll a paper(move to next line)

Move to head of line

The History of Terminal

Move cursor left

Move cursor right

Line feed

Carriage return

The History of Terminal

These are "control codes".

The History of Terminal

The reason of those two operations are
separated is those need too many time to
finish.

Line feed

Carriage return

The History of Terminal

Aside, "Line break" character code is...
Carriage return + Line feed on Windows

Carriage return on macOS

Line feed on Unix like OSes

The History of Terminal

The difference is based on early times
operations set of printing systems for
each OSes.

The History of Terminal

Now, other some operations are added to
the protocol. It's the base of modern
"terminal". It was 1901.

The History of Terminal

The early "terminal" was that separated
"keyboard" and "printing system" from
typewriter.

The History of Terminal

The "printing system" is the base of "line
printer".

The History of Terminal

And, some terminals need "extended
features". So, a new character, "following
characters are not printable, just control
code" is added to the protocol.

The History of Terminal

These are called "escape key" and
"escape sequence".

The History of Terminal

But many companies develop new
"terminal" machines. They specify non-
compatible escape sequences each other.

The History of Terminal

It's a flood of terminals. Users are
confused hardly.

The History of Terminal

In those times, a new technology comes.

The History of Terminal

It's...

computer

The History of Terminal

Teletype terminals and line printers come
to be connected to computers,
eventually, line printers are replaced with
visual monitors.

The History of Terminal

"Desk Set"(1957), sponsored by IBM

The History of Terminal

Many escape sequences for terminals are
different so computers support them by
hardware because softwares is still
immature.

The History of Terminal

Dozens of years later, primitive softwares
come to be OSes. Unix comes up. User
space on OS changes "settings" of
software.

The History of Terminal

Unix like OSes changed the situation of
escape sequences.

The History of Terminal

Termcap what is encapsulated software
for incompatible escape sequences
named each escape sequence, and has a
dictionary from name to real escape
sequence.

The History of Terminal

It's a revolution. Users can use any
terminals for own computer. It's
developed at 1978.

The History of Terminal

And Terminfo what is improved Termcap
is developed at 1982.

The History of Terminal

ANSI sequences were introduced in the
1970s to replace vendor-specific sequences
and became widespread in the computer
equipment market by the early 1980s.

[cited from `ANSI escape code - Wikipedia']

The History of Terminal

Especially, SGR parameters is famous to
set character decoration.

The History of Terminal

print "\e[31m" # red
print "red"
print "\e[32m" # green
print "green"
print "\e[34m" # blue
print "blue"
print "\e[0m" # reset
print "\n"

result:

The History of Terminal

This is the very sad history of terminals,
but Windows introduced another way.

The History of Terminal

Windows has Console API for control
terminal as known as command prompt.

The History of Terminal

Console API of Windows controls a
console via "console handle".

The History of Terminal

Escape sequences need using I/O to
control console.

The History of Terminal

Console API of Windows is smarter API for
console, it's very practical!

The History of Terminal

And it means Console API is a newcomer
of the terminal's sad history.

The History of Terminal

It's complex insanely.

The History of Terminal

Humans are stupid.

The History of Terminal

I asked a question at the start of this
section.

"When do you think the terminal's
historical background started?"

The History of Terminal

An answer is "unclear".

The History of Terminal

What is "terminal"?
What is "the protocol"?
What is "encoded data"?

The History of Terminal

The History of Terminal

Maybe, fire's smoke is the earliest long
distance communication technology.

My Adventure In Ruby

the history of terminal

GNU Readline compatible features

I18n support

My Adventure In Ruby

the history of terminal

GNU Readline compatible features

I18n support

GNU Readline Compatible Features

Ruby needs GNU Readline as a native
library.

GNU Readline Compatible Features

GNU Readline is powerful line editor for
taking user input.

GNU Readline Compatible Features

require 'readline'

Readline.readline('prompt>')

Shows the prompt and reads the inputted
line with line editing.

GNU Readline Compatible Features

Line editing is...:
Move cursor

Delete characters

Use history

...

GNU Readline Compatible Features

small IRB sample
require 'readline'

while (line = Readline.readline('echo>'))
 break if line == 'exit'
 print eval(line) # evaluate!
end

GNU Readline Compatible Features

GNU Readline is used by...:
shell(tcsh, Bash, and others)

MySQL command-line tool

The GNU Debugger(GDB)

GNU Readline Compatible Features

Ruby's standard library "readline" is used
by...:

IRB

Pry

Thor(famous simple framework for
command line utilities)

GNU Readline Compatible Features

The "readline" library is very important
for Ruby. But "readline" can be used only
when GNU Readline is installed before
Ruby builds.

GNU Readline Compatible Features

Ubuntu/GNU Linux case
$ sudo apt install libreadline-dev
$ rbenv install 2.6.5

If you forget installing "libreadline-dev"
first, Ruby doesn't have "readline" library.

GNU Readline Compatible Features

$ pry # tried to launch Pry without readline lib
Sorry, you can't use Pry without Readline or a compatible library.
Possible solutions:
 * Rebuild Ruby with Readline support using `--with-readline`
 * Use the rb-readline gem, which is a pure-Ruby port of Readline
 * Use the pry-coolline gem, a pure-ruby alternative to Readline

Pry fails to launch when Ruby doesn't
have "readline" library.

GNU Readline Compatible Features

It's must be a trap to beginners. So I
decided to re-implement "readline"
library by pure Ruby. It's Reline.

GNU Readline Compatible Features

Ruby 2.7 uses GNU Readline by default,
and uses Reline inside if doesn't have
GNU Readline.

GNU Readline Compatible Features

Reline has 3 layers:
Keyboard input

Line editing

Build string as default encoding of the
environment

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

Reline uses select(2) system call in Unix
like OSes, kbhit() and getwch() in
Windows Console API, to take keyboard
input.

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

And I ported Emacs bindings and Vi
bindings from GNU Readline for line
editing.

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

Finally, I implemented building string as
the default encoding of the environment.

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

I got off from work! I did it!

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

But the implementation is broken in non-
Unicode encodings, so I re-implement
whole line editting code.

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

Unicode characters are broken at the
time of first input...I fixed it...

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

Combining Unicode charasters are
sometimes broken in line editing...

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

I fixed the whole implementation the
layer due to lower layer...

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

All tests fail so I remake whole tests.

GNU Readline Compatible Features

Keyboard input

Line editing

Build string by default encoding of the
environment

I worked out over 2 years but I'm still
fixing source code and tests.

GNU Readline Compatible Features

I consult Ruby core team about the
implementation problems, and almost
finished.

GNU Readline Compatible Features

It will be adopted at Ruby 2.7.

GNU Readline Compatible Features

But there is still some work to be done.

GNU Readline Compatible Features

It's Reidline.

GNU Readline Compatible Features

The original author of IRB, keiju-san, he's
developing new IRB, it's Reirb.

GNU Readline Compatible Features

Reirb uses an original line editor
"Reidline" inside.

GNU Readline Compatible Features

Reidline is a multiline editor, like
JavaScript console in browser.

GNU Readline Compatible Features

But the implementation is too hard, so I
added Reidline mode to Reline. It's just
for Reirb but Ruby 2.7's IRB contains the
Reidline mode as a transition period.

My Adventure In Ruby

the history of terminal

GNU Readline compatible features

I18n support

I18n Support

There are so many character encoding in
the world, especially CJK(Chinese,
Japanese, Korean) have so complex
characters and history. More than 10,000
Kanji characters, Kana, Hangul...

I18n Support

But it's very confused for non CJK people.
So I'll try explain by emoji's specifications.

I18n Support

We always use the word "character"
primitively. But it's a very difficult thing.

I18n Support

It's important to understand the
difference between codepoint and
grapheme in Unicode but it confuses you.

I18n Support

Some codepoints are invisible because
these are just "combining character" for
"base character".

I18n Support

For example, "☎"(U+260E BLACK
TELEPHONE) is changed with following
invisible "variation selector" if you use a
font that has the "variation".

I18n Support

For example, the "variation" is
"textual fashion"(U+FE0E VARIATION
SELECTOR-15) or
"emoji fashion"((U+FE0F VARIATION
SELECTOR-16)).

I18n Support

I18n Support

And some combining characters has a
glue codepoint(U+200D ZERO WIDTH
JOINER) to join different characters.

I18n Support

For example, " "(EYE IN SPEECH
BUBBLE U+1F441 U+FE0F U+200D
U+1F5E8 U+FE0F) is composed of
"eye"(U+1F441 EYE) and " "(U+1F5E8
LEFT SPEECH BUBBLE) with a glue
codepoint(U+200D ZERO WIDTH JOINER).

I18n Support

I18n Support

Besides, national flags are constructed by
alphabets.

I18n Support

" "(U+1F1FA U+1F1F8 flag for United
States) is composed of "🇺"(U+1F1FA
REGIONAL INDICATOR SYMBOL LETTER U)
and "🇸"(U+1F1F8 REGIONAL INDICATOR
SYMBOL LETTER S) without joiner.

I18n Support

DEMO

I18n Support

Unicode has contains human's confused
history.

I18n Support

So, the "codepoint" is an unit that should
be coded.

I18n Support

And the "grapheme" is an unit that
human beings understand as a character.

I18n Support
 - 2 codepoints, 1 grapheme

🇺 - 1 codepoint, 1 grapheme

🇸 - 1 codepoint, 1 grapheme

US(ASCII) - 2 codepoints, 2 graphemes

U+200D(ZWJ) - 1 codepoint, 0 grapheme

 - 5 codepoints, 1 grapheme

I18n Support

String#chars method returns codepoints.
String#grapheme_clusters method
returns graphemes.

" ".chars # => ["🇺", "🇸"]
" ".grapheme_clusters # => [" "]

I18n Support

Do you understand?

I18n Support

I have no confidence.

I18n Support

If Reline remove only 1 codepoint from 1
grapheme that is constructed by plural
codepoints, the editor break easily.

My Adventure In Ruby

...It's an outline of technical background
of interactive CLI of Ruby.

My Adventure In Ruby

The brand-new IRB will be adopted at
Ruby 2.7.

My Adventure In Ruby

And, I'll release the brand-new IRB before
Ruby 2.7.

My Adventure In Ruby

$ gem install irb
$ irb # brand-new IRB!

After that, you can install and use the
brand-new IRB.

My Adventure In Ruby

When will I release the brand-new IRB?

Right
Now

My Adventure In Ruby

$ gem install irb

Install the brand-new IRB.

DEMO of
the brand-new

IRB

My Adventure In Ruby

$ gem install irb

Install the brand-new IRB.
Right Now.

My Adventure In Ruby

Please file some issues if you find bugs.
https://github.com/ruby/irb

https://github.com/ruby/reline

Take it easy. It's a great contribution for
us.

Powered by Rabbit 3.0.0 and COZMIXNG

