
Self-testing Code in

Ruby
Giovanni Sakti

Starqle

What is Self-testing code?

Self-testing code

Code that have built-in tests

The tests serve as a binding contract

The tests can be run arbitrarily

What is TDD? How it differs from self-
testing code?

TDD

Practices of writing tests before the

code

Ensure that the code is self-tested

It is, however, optional to do TDD to

write self-testing code

TDD

But some companies enforce TDD

because TDD enforces YAGNI principle

TDD

We'll see why...

TDD Steps

Write a test

Run the test, it should fail

Write code just enough to pass the

test

Run the test

Repeat

TDD & YAGNI

Because we only write just enough code

to pass the test, there will be no

unnecessary codes

Test in Ruby

There are several tools for doing testing

in ruby

Test in Ruby

RSpec

Minitest

test-unit

Test in Ruby

Let's try using RSpec

RSpec Install

% gem install rspec

RSpec Help

% rspec --help

Now let's do TDD practice using RSpec

TDD with RSpec (1)

Create a simple test of program that we

want to create

game_spec.rb

RSpec.describe Game do
 describe "#score" do
 it "returns 0 for new game" do
 game = Game.new
 expect(game.score).to eq(0)
 end
 end
end

TDD with RSpec (2)

Run the example and watch it fail

% rspec game_spec.rb
 uninitialized constant Object::Game (NameError)

TDD with RSpec (3)

Now write just enough code to make it
pass

game.rb

class Game
 attr_reader :score

 def initialize
 @score = 0
 end
end

TDD with RSpec (3) cont'd

Now write just enough code to make it
pass

game_spec.rb

require './game'
...

TDD with RSpec (4)

Run the example and the test shall pass

% rspec game_spec.rb --color --format doc

Game
 #score
 returns 0 for all gutter game

Finished in 0.00057 seconds
1 example, 0 failures

TDD with RSpec (5)

Repeat with new features

Some important RSpec APIs

Basic Matchers

equality
expect('x'+'y').to eq('xy') # a == b
expect('x'+'y').to eql('xy') # a.eql?(b)
expect('x'+'y').not_to be('xy') # a.equal?(b)

strings
expect('abcd').to include('bc')
expect('abcd').to start_with 'ab'
expect('abcd').to end_with 'cd'
expect('abcd').to match /[a-z]+/

collections
expect([1, 2, 3]).to include(1, 3)
expect([1, 2, 3]).to contain_exactly(3, 2, 1) # order not important
expect({ a: 1, b: 2 }).to include(b: 2)

Basic Matchers cont'd

booleans and nil
expect(true).to be true
expect(false).to be false
expect('abc').to be_truthy
expect(nil).to be_falsey
expect(nil).to be_nil

numeric
expect(5).to be > 4
expect(5).to be >= 4
expect(5).to be < 6
expect(5).to be <= 6
expect(5).to be_between(4, 6).exclusive
expect(5).to be_between(5, 6).inclusive
expect(4.99).to be_within(0.02).of(5)

errors (exceptions)
expect{ 5 / 0 }.to raise_error(ZeroDivisionError)
expect{ 5 / 0 }.to raise_error("divided by 0")
expect{ 5 / 0 }.to raise_error(ZeroDivisionError, "divided by 0")

Predicate Matchers

Predicate matchers are a little DSL for
calling predicate methods. Predicate

methods are methods that:

return a boolean value; and

have a name that ends with ?

Predicate Matchers cont'd

array
expect([]).to be_empty # [].empty?

hash
expect({a: 1}).to have_key(:a) # {a: 1}.has_key?(:a)
expect({a: 1}).to have_value(1) # {a: 1}.has_value?(1)

object
expect(5).not_to be_nil # 'hi'.nil?
expect(5).to be_instance_of Fixnum # 5.instance_of?(Fixnum)
expect(5).to be_kind_of Numeric # 5.kind_of?(Numeric)

Predicate Matchers cont'd

Predicate matchers work on all objects,
including custom classes

Now let's do some exercises...

TDD Exercises (1)

Create a Sentence from Words

Without using "Array#each" iterator,
create a method that will return a

sentence when given an array of words.

create_sentence(["hello", "world"])
will return: "hello world"

TDD Exercises (2)

Find Palindromes

Write a method that receives two

positive integers "m" and "n" and returns
an array of "n" palindrome numbers after
"m" (including "m" itself).

find_palindrome(100, 2)
will return [101, 111]

find_palindrome(22, 3)
will return [22, 33, 44]

TDD Exercises (3)

Descending Order

Create a method that receives an

integer as an argument and rearrange it
to generate biggest possible value.

descending(21445) # will return 54421
descending(145263) # will return 654321
descending(1254859723) # will return 9875543221

TDD Exercises (4)

Deep Count

Create a method called deep_count that
will return the number of elements in an

array, including the number of elements
of its sub arrays.

TDD Exercises (4) cont'd

deep_count([]) # will return 0
deep_count([1, 2, 3]) # will return 3

deep_count(["x", "y", ["z"]])
will return 3 elements ("x", "y", ["z"]) in main array
plus 1 element ("z") in sub array
total = 4 elements

deep_count([1, 2, [3, 4, [5]]])
total = 7 elements

deep_count([[[[[[[[[]]]]]]]]])
total = 8 elements

TDD Exercises (5)

Letter Count

Create a method that receives a string

as its argument and returns a hash that
shows the number of occurrence of
each letter in that string.

TDD Exercises (5) cont'd

letter_count("gojek")
will return {:g=>1, :o=>1, :j=>1, :e=>1, :k=>1}

letter_count("kolla")
will return {:k=>1, :o=>1, :l=>2, :a=>1}

letter_count("scholarship")
will return {:s=>2, :c=>1, :h=>2, :o=>1, :l=>1, :a=>1, :r=>1, :i=>1, :p=>1}

Thanks

