
Patterns
in Software Engineering

Giovanni Sakti
Starqle



What is Patterns?



Patterns

Patterns describes a problem, 
which occurs over and over again 
in our environment and then 
desribes the core of the solution 
to that problem...

[cited from `Christopher Alexander']



Patterns

...in such a way that you can use 
this solution a million times over 
without ever doing it the same 
way twice.

[cited from `Christopher Alexander']



Okay, but who is Christopher 
Alexander?





He authored widely-influential book in 
1977.





The book influences multiple 
disciplines including software 

engineering.



So, what is patterns from the 
viewpoint of software engineering?



Patterns

Patterns are distilled commonalities 
that you find in software.



Patterns

It allows us to deconstruct a large 
complex structure and build using the 

pattern itself.



Patterns

Patterns contain solution that have 
developed and evolved over time.



Patterns

It is rarely designs that people tend to 
get initially.



We know that designing software is 
hard.



Designing software with reusable 
components are even harder.



Your design should be specific to the 
problem at hand, but general enough 

to address future problems and 
requirements.



Reusable & flexible design is difficult, 
if not impossible, to get "right" the 

first time.

 Even for experienced designer.



Reusability

Instead, experienced designer won't 
try to solve every problem from 

scratch.



Reusability

They will try to reuse existing solution 
instead.



Reusability

So, patterns help designer gets a 
design "right" faster.



What can learning patterns help you?



Expectations

Common design vocabulary



Expectations

Documentation and learning aid



Expectations

An adjunct to existing methods



Expectations

A target for refactoring



Expectations

Common design vocabulary

Documentation and learning aid

An adjunct to existing methods

A target for refactoring



Patterns Essential Elements



Patterns Essential Elements

An excellently documented patterns 
will have several elements attached to 

it.



Patterns Essential Elements

Which you can use to learn more 
about them.



Patterns Essential Elements

Name

Intent

Sketch



Patterns Essential Elements 
(cont'd)

Problem

Solution

Consequence(s)



Patterns Essential Elements 
(cont'd)

When to Use It

Example(s)



Patterns Categories



Patterns Categories

There are several categories of 
patterns, based on the level in which 

they reside.



Patterns Categories

From "lowest" level to "highest" level

Programming Paradigms

Design Patterns

Architectural Patterns



Patterns Categories

We'll try to discuss it one-by-one.



Programming paradigms



Programming Paradigms

Programming paradigms
(*1)

, in a way, is 
a pattern.

(*1)Such as: OO, Functional or Procedural



Programming Paradigms

To be precise, programming paradigms 
is the smallest and lowest level of 

patterns possible.



Programming Paradigms

Programming paradigms are most 
likely to influence patterns that reside 

above it.



Programming Paradigms

And because programming paradigms 
are tightly coupled to programming 

language..



Programming Paradigms

..our pick of programming language 
may influence the way we design our 

software.



Design Patterns



Design Patterns

Design patterns are code-level 
commonalities.



Design Patterns

Providing schemes for refining & 
building smaller subsystems.



Design Patterns

Design patterns are medium-scale 
tactics that flesh out some of the 

structure & behaviour of entities and 
their relationships.



Design Patterns

As we discuss previously, design 
patterns may be influenced by 

programming paradigms.



Design Patterns

Some design patterns can be very 
important or pale to insignificance due 

to language that we use.



Design Patterns

Design patterns can be categorized 
further.



But first let us discuss about the last 
category of pattern.



Architectural Patterns



Architectural Patterns

Architectural patterns on the other 
hand, are commonalities at higher level 

than design patterns.



Architectural Patterns

Architectural patterns are high level 
strategies.



Architectural Patterns

Architectural patterns concerns:

Large-scale components

Global properties

Mechanism of a system



Architectural Patterns

One of the most well-known 
architectural pattern is the MVC 

architecture.



MVC Architecture

MVC intents are to promote efficient 
code reuse and parallel development.



MVC Architecture



MVC Architecture

It tries to solve the problem of tightly-
coupled relation between UI codes and 

logic that hinders reusability.



MVC Architecture

It does so by separating codes into 
three concerns: models, views and 

controllers.



MVC Architecture

Notice that we already discuss about 
the name, intent, sketch, problem and 

solution provided by a pattern.



Design Patterns Categories



Design Patterns Categories

In arguably the most influential book 
on design patterns (The GoF book),



Design Patterns Categories



Design Patterns Categories

the authors categorize design patterns 
into three categories

Creational

Structural

Behavioural



Creational Patterns



Creational Patterns

Creational patterns concern about 
object creation.



Creational Patterns

It abstract the instantiation process.



Creational Patterns

They help make a system independent 
on how its objects are created, 

composed and represented.



Creational Patterns

Useful when creating objects with 
particular behaviour requires more 
than simply instantiation a class.



Creational Patterns

Favour system that prefer to use 
object composition instead of class 

inheritance.



Creational Patterns

Example: Abstract Factory



Abstract Factory

Provide an interface for creating 
families of related or dependent 
objects without specifying their 

concrete class.





Structural Patterns



Structural Patterns

Structural patterns deal with the 
compositions of classes or objects to 

form larger structures.



Structural Patterns

Example: Adapter



Adapter

Convert the interface of a class into 
another interface clients expect.



Adapter

Adapter lets classes work together 
that couldn't otherwise because of 

incompatible interfaces.





Behavioural Patterns



Behavioural Patterns

Behavioural patterns characterize the 
way in which classes or objects 

interact and distribute responsibility.



Behavioural Patterns

Not just patterns of classes and 
objects but also the patterns of 
communication between them.



Behavioural Patterns

Example: Observer or Pub-Sub



Observer

Define one-to-many dependency 
between objects.



Observer

When one object change state, all its 
dependents are notified and updated 

automatically.





Design Patterns Categories

There are no limits in defining design 
pattern categories, what we just 

discussed is just a (famous) example.



How to Utilize Patterns Properly?



Utilizing Patterns

Consider how patterns solve the 
problems



Utilizing Patterns

Scan intent and sketch sections



Utilizing Patterns

Study how patterns relate with each 
other



Utilizing Patterns

Study patterns of like purpose



Utilizing Patterns

Examine a cause of redesign



Utilizing Patterns

Consider what should be variable in 
your design



Anti-patterns



Anti-patterns

There are also patterns that have 
negative consequences when it is 

present in our software



Anti-patterns

It is called the anti-patterns



Anti-patterns

Anti-patterns are common response 
to a recurring problem that is usually 

ineffective and risks being highly 
counterproductive.



Anti-patterns

Example: Big ball of mud



Big ball of mud

Software system that lacks a 
perceivable architecture.



Big ball of mud

Although undesirable from a software 
engineering PoV, such systems are 

common in practice. 



Big ball of mud

Due to business pressure, developers 
turnover and code entropy.



Thanks!


