
A Beginner's Complete
Guide to Microcontroller
Programming with Ruby

hasumikin
Euruko 2023

Vilnius, Lithuania
21st - 23rd September 2023

Part 1

Preparation

Part 2

Getting Started with Microcontroller

Part 3

Exploring PicoRuby Further

Part 4

PicoRuby Under the Hood

self.inspect
Hitoshi HASUMI
hasumikin (GitHub ,ex-Twitter, Bluesky and Threads)

Creator of PicoRuby and PRK Firmware
Committer of CRuby's IRB and Reline
First prize of Fukuoka Ruby Award
(2020 and 2022)
A final nominee of Ruby Prize 2021

Part 1

Preparation

Setup (minimal)

RP2040

Raspberry Pi Pico
Or other RP2040-based controller

USB cable
Terminal emulator on laptop

Raspberry Pi Pico
Raspberry Pi Pico: Microcontroller board

MCU: RP2040
Cortex-Mzero+ (dual)

264 KB RAM

2 MB flash ROM

It generally runs without an OS (bere metal)

ref) Raspberry Pi: Single-board computer
It generally needs an OS like Raspberry Pi OS or Windows
for Arm

Terminal emulator
Linux -> GTKTerm
Windows -> Tera Term
macOS -> PuTTY (I'm not sure)
Traditional CUI/TUI tools may have CR/LF
trouble

cu

screen

minicom

Let's begin 1/4
Download the latest
`R2P2-*.uf2`
from GitHub

https://github.com/picoruby/R2P2/releases

Let's begin 1/4

BTW, R2P2 stands for

Ruby on Raspberry Pi Pico

Let's begin 2/4
Connect Pi Pico and PC while
pressing the BOOTSEL button

You'll find "RPI-RP2" drive in file manager

https://www.raspberrypi.org/documentation/rp2040/getting-started

Let's begin 3/4
Drag & drop `R2P2-*.uf2` into RPI-RP2 drive

Let's begin 4/4
Open a proper
serial port on
terminal emulator

R2P2 Shell should start [Demo]
Unix-like shell running on Raspberry Pi Pico
You can use some
commands like `cd`,
`ls`, `mkdir`, and `irb`

PicoIRB [Demo]
PicoRuby's IRB is running within the R2P2 shell
on Raspberry Pi Pico
Your Ruby snippet is compiled into mruby VM
code and executed on the fly

It means PicoRuby contains an mruby compiler which can
run on a one-chip microcontroller (will be mentioned later)

Part 2

Getting Started with
Microcontroller

GPIO (General Purpose Input/Output)
Fundamental digital I/O
Variety of uses:

Input: Detects on-off state of switch and button

Output: Makes a voltage

You can even implement a communication protocol by
controlling GPIO in milli/micro sec

GPIO --- Blinking LED [Demo]

irb> led = GPIO.new(25, GPIO::OUT)
irb> 5.times do
irb* led.write 1
irb* sleep 1
irb* led.write 0
irb* sleep 1
irb* end

GPIO25 internally connects to on-board LED through a resistor

GPIO --- Blinking LED by discrete parts
Parts list:

LED (RED)

Resistor (1kΩ)

GPIO --- Blinking LED by discrete parts

irb> pin = GPIO.new(15, GPIO::OUT)

GPIO --- Blinking LED by discrete parts

GPIO15 ===> 1kΩ ===> LED ===> GND
<----- 1.5V -----><--- 1.8V ---->
<------------ 3.3V ------------->

RP2040's logic level: 3.3V
LED voltage drop: 1.8V
(according to LED's datasheet)
Current: (3.3V - 1.8V) / 1kΩ = 1.5mA
(calculated by Ohm's Law)

Study time: Physics
Ohm's Law

V = I * R ⇔ I = V / R ⇔ R = V / I

Kirchhoff's Circuit Laws
Current law: The algebraic sum of currents in a network of
conductors meeting at a point is zero

Voltage law: The directed sum of the potential differences
(voltages) around any closed loop is zero

ADC (Analog to Digital Converter)
ADC handles values in-between by converting
an analog voltage to a digital value
e.g. RP2040's ADC has 12 bits depth and
accordingly takes a raw value from 0 (0 V) to
4095 (3.3 V)
Typical usage:

Temperature sensor

Joystick

ADC --- Temperature [Demo]
irb> require 'adc'
irb> adc = ADC.new(:temperature)
irb> adc.read_raw
irb> while true
irb* voltage = adc.read_voltage
irb* puts 27 - (voltage - 0.706) / 0.001721
irb* sleep 1
irb* end

RP2040 has an in-chip temperature sensor that
connects to an ADC channel

ADC --- Temperature by discrete parts
Parts list:

Resistor
Rref: 10kΩ

Thermistor
10kΩ (at 25℃ = 298.15K)

B const: 3950

T0: 298.15 (kelvin)

ADC --- Temperature by discrete parts
Parts list:

Resistor
Rref: 10kΩ

Thermistor
10kΩ (at 25℃ = 298.15K)

B const: 3950

T0: 298.15 (kelvin)

ADC --- Temperature by discrete parts
irb> require 'adc'
irb> Rref = 10000.0
irb> B = 3950.0
irb> T0 = 298.15
irb> def kelvin_temp(rth)
irb* temp_inverse = 1 / B * Math.log(rth / Rref) + (1 / T0)
irb* 1 / temp_inverse
irb* end
irb> rth = (3.3 / adc.read_voltage - 1) * Rref
irb> puts "#{kelvin_temp(rth) - 273.15} C"
=> 28.1234 C

Part 3

Exploring PicoRuby Further

PicoRuby applications
R2P2

Unix-like shell system written in PicoRuby

You may want to say an Operating System in Ruby

PRK Firmware
Keyboard firmware framework for DIY keyboard

You can write your keymap and keyboard's behavior with
Ruby

R2P2 (again)
IRB

Multiple-line editor

Built-in commands and executables (all written
in Ruby)

You can write your own external command

Executables in R2P2

date
puts Time.now.to_s

mkdir
Dir.mkdir(ARGV[0])

Write a Ruby script file [Demo]

$> vim hello.rb

Edit the file and save it.

puts "Hello World!"

Then run it.

$> ./hello.rb

Or just drag and drop [Demo]

GPIO and ADC work together [Demo]
require 'adc'
def calc_temp(volt)
 27 - (volt - 0.706) / 0.001721
end
adc = ADC.new(:temperature)
led = GPIO.new(25, GPIO::OUT)
while true
 temp = calc_temp(adc.read_voltage)
 puts "temp: #{temp} C"
 led.write(30 < temp ? 1 : 0)
 sleep 1
end

R2P2 [Demo]
`/home/app.rb` automatically runs on start up

You can stop by Ctrl-C
led = GPIO.new(25, GPIO::OUT)
while true
 led.write 1
 puts "Hello World!"
 sleep 1
 led.write 0
 sleep 1
end

Serial communication protocols
SPI: High speed, full duplex. e.g. Acceleration
sensor, Color display, etc.
I2C: Low speed, Addressing network with fewer
wires. e.g. RTC, Temperature sensor and
Charactor display, etc.
UART: Buffered asyncronous communication.
e.g. Terminal emulator, Wireless module like BLE
and LTE/5G, etc.

I2C and UART
Parts list:

PCF8523 RTC module

FTDI USB to TTL Serial
Adapter Cable (3.3V)

I2C and UART
github.com/picoruby/rp2040-peripheral-demo

Example of I2C (RTC)
and UART (USB serial)

Watch the demo video
in README.md

Also an example of
how to build your own app

PRK Firmware - Corne (CRKBD)

PRK Firmware - Meishi2
require "consumer_key"
kbd = Keyboard.new
kbd.init_pins(
 [6, 7], # row0, row1
 [28, 27] # col0, col1
)
kbd.add_layer :default, %i[RAISE KC_2 KC_A KC_4]
kbd.add_layer :raise, %i[RAISE
 KC_AUDIO_VOL_UP
 KC_AUDIO_VOL_DOWN
 KC_AUDIO_MUTE]
kbd.define_mode_key :RAISE, [:KC_SPACE, :raise, 200, 200]
kbd.start!

Part 4

PicoRuby Under the Hood

mruby and PicoRuby
mruby

General purpose embedded Ruby implementation written
by Matz

PicoRuby
Another implementation of murby targeting on one-chip
microcontroller (smaller foot print)

Based on the mruby's VM code standard

Small foot print

$ valgrind \
 --tool=massif \
 --stacks=yes \
 path/to/(mruby|picoruby) \
 -e 'puts "Hello World!"'

`massif.out.[pid]` file will be created. Then,

$ ms_print massif.out.1234 | less

Small foot print
--
Command: mruby -e 'puts "Hello World!"'
Massif arguments: --stacks=yes
ms_print arguments: massif.out.18391
--
 KB
133.5^ #
 | #
 | #
 | #
 | #
 | #
 | #
 | #
 | @ :@:::@:#:
 | @:@@@::::@:::@:#::
 | ::@::::::@::::::::@:@@@::::@:::@:#::
 | @:::::::::@@::::@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @@@:::@:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @ :: @:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @ :: @:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @ :: @:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @ :: @:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @ :: @:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @ :: @:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 | @ @ :: @:::::::::@ :: :@:::@::::::@:::::: :@:@@@::::@:::@:#::
 0 +--->Mi
 0 1.281
Note: Measured in 64 bit Ubuntu

Small foot print
--
Command: picoruby -e 'puts "Hello World!"'
Massif arguments: --stacks=yes
ms_print arguments: massif.out.21752
--
 KB
9.820^ #
 | @:#:::
 | @:#:::::
 | @:#:::::
 | @:#:::::
 | @ @:#:::::
 | @ @:#:::::
 | @ : @:#:::::
 | @ ::: @:#:::::
 | @ : ::: @:#:::::
 | @ ::@::::@:#:::::@
 | @ ::@::::@:#:::::@
 | @: :::::@::::@:#:::::@
 | @::: :: :::@::::@:#:::::@
 | @:: ::: :::@::::@:#:::::@
 | @:: : ::: :::@::::@:#:::::@
 | @:: : ::: :::@::::@:#:::::@
 | :@:: : : :: :@:@: : :@@: ::@::::: ::: :::@::::@:#:::::@
 | :@:: :::::::::::::::@:@:@:::::@ ::: @:: : :::: :::@::::@:#:::::@
 |::::::@::@:: ::: ::: :::::@:@:@:: ::@ : : @:: : :::: :::@::::@:#:::::@
 0 +--->ki
 0 324.5
Note: Measured in 64 bit Ubuntu

Small foot print
RAM consumption of `puts "Hello World!"`

mruby: 133.5 KB (on 64 bit)

PicoRuby: 9.82 KB (on 64 bit)

RP2040 (32 bit) has 264 KB RAM
Only small applications written in mruby should work

R2P2 and PRK Firmware should be written in PicoRuby

PicoRuby ecosystem
Picogems

PRK Firmware is also a Picogem

Peripheral gems
picoruby-gpio

picoruby-adc

picoruby-i2c

picoruby-spi

picoruby-uart

Peripheral interface guide
https://github.com/mruby/microcontroller-peripheral-interface-guide

PicoRuby ecosystem
Build system forked from mruby

You can build your application in a similar way to mruby

You can also write your gem and host it on your GitHub

RP2040 is the only target as of now though,
Carefully designed to keep portability

Restriction of PicoRuby
Minimum built-in classes and methods
Doesn't support

Some syntax like heredoc and numbered parameters

Module due to VM implementation

No strict distinction between instance methods
and singleton methods
Some bugs (because I'm lazy).
See github.com/picoruby/picoruby/issues

Conclusion
PicoRuby is a Ruby implementaiton targeting on
one-chip microcontroller
You can develop your microcontroller
application step by step using the R2P2 and IRB
You need only R2P2 to run small applications
Future work

BLE and WiFi with Raspberry Pi Pico W (soon)

Porting to microcontrollers other than RP2040 (someday)

RubyKaigi 2024[ad]

In Okinawa May 15th - 17th
1000+ attendees, tons of tech talks
and various parties

https://098free.com/photos/14262/

That's all! Visit repos and stargaze

github.com/picoruby/picoruby

github.com/picoruby/R2P2

github.com/picoruby/prk_firmware

github.com/picoruby/rp2040-peripheral-demo

