
mruby/c: Running on Less Than
64KB RAM Microcontroller

HASUMI Hitoshi @hasumikin

Me
HASUMI Hitoshi
@hasumikin
Live in Matsue city,
a holy place of Ruby
Sake 🍶
Soba 🍜
Coffee ☕

Me

FUZZ

Chapter 1

Introduction

Terminology
mruby/c

A language implementation I will talk about
today
I say mrubyc since /c [slˈæʃ síː] is hard to
pronounce

Microcontroller
Small computer contains CPU, memory and
programmable I/O peripherals

Terminology
RTOS

Real-time OS. Usually used for microcontroller

Task
Almost equivalent to `Thread` in Linux. We say
`Task` in microcontroller world

Terminology
旭日酒造 (Asahi-Shuzo)

Shuzo means `Sake brewery`
One of the best Japanese Sake brewery
FYI, Asahi Breweries (famous for SUPER DRY)
has no concern with Asahi-Shuzo
Asahi-Shuzo and I make an IoT system using
mruby/c

Why microcontroller?
I don't use single board computer like
Raspberry Pi for production environment.
I use microcontroller, instead

It starts immediately right after plugged in
End-users, brewery workers in my case, can
use it simply like home electical appliance

Why microcontroller?
Microcontroller can run without OS

So-called `Bare Metal`

You can narrow security issue list
Many a malware aims at Linux or Windows
platform as a target
You don't need to consider unnecessary
deamon
You don't need to do `apt upgrade`

(RasPi can be bare metal device if you want)

Why microcontroller?
Low energy

Rarely overheated
Many choices of power supply

Mass production
You can choose appropriate chipset (number of
GPIO, memory size, etc.) for your application
Cost advantage for parts supply and
subcontractor manufacturing

Which microcontroller?

Which microcontroller?

e.g. CYPRESS PSoC5LP
32 bit Arm Cortex-M3 CPU
Flash: 256KB
SRAM: 64KB (target size of mruby/c)

Which microcontroller?

e.g. Espressif ESP-WROOM-32 (ESP32)
32 bit dual core LX6 CPU
Flash: 4MB
SRAM: 520KB

My IoT project

My IoT project
IoT system for Sake brewing
PSoC5LP
Delivered to actual brew work in January
2018
Devices post temperature of Sake ingredient
in brewing, surrounding temperature and
humidity to server
Data is displayed on mobile app

My IoT project

My IoT project

My IoT project

IoT in field makes you hurry
Imagine,

You have to go back and forth between dark 5℃

(=41°F) storage cellar and humid 35℃ (=95°F)
rice mold room
Brewery workers run around
You have to amend your firmware with your
small laptop in 10 minutes
You will thank Ruby's descriptiveness and
agility

Demo
CO2 concentration

400ppm : Atmospheric
1000ppm : Your programming speed decreases
1500ppm : FYI, tomatoes 🍅 may grow well
> 2000ppm : Sleepiness, headache
> 40000ppm : 💀

(Please look at the screen)

Demo
My device is taking CO2 concentration
CO2 may increase because of your breathing

Demo
My device is taking CO2 concentration
CO2 may increase because of your breathing
I will prove that it is due to CO2 if you fell
asleep while I was speaking

😴

Bugaboos in IoT 👻

Bugaboos in IoT 👻
Peripheral equipments ...★
Circuit, wiring and housing
Printed circuit board = PCB
Soldering ...★
Firmware with C, mruby and mruby/c ...★
Network, TCP/IP, Bluetooth, etc.

★...I will cover these topics today

Peripheral equipments

Peripheral equipments
Very important to check the part before
writing application code

Do equipments like sensor or communication
module work as its spec sheets?
Whether or not the equipment is broken
(sometimes broken by soldering heat 😭)

Combining parts is unrevertable
We don't have a Git for hardware.

Peripheral equipments

Raspberry Pi & CRuby are great for pre-
prototyping

Use breadboard or make PCB for experiment

CRuby and serial port
Notice: This is CRuby for RasPi
require "rubyserial"
require "timeout"
sp = Serial.new "/dev/serial0", 9600, 8
loop do
 puts "[command]"
 command = gets
 sp.write command.sub("\n", "\r") # replace LF if needed
 sleep 0.1
 result = ""
 begin
 Timeout.timeout(10) do
 loop do
 line = sp.read(128)
 break if line == "" && result != ""
 result << line
 sleep 0.1
 end
 puts "=> " + result
 end
 rescue Timeout::Error

CRuby and serial port
$ serial_communication_test.rb
[command]
AT # command
=> OK # response
[command]
AT+CIMI # command
=> 123456789012 # response
[command]
AT+XXX # command
=> error # response

Soldering

Soldering

It often works even if you leave a pin
unsoldered on surface mounting

Because the pin touches circuit's plate
Then, it will come not to work one day

Soldering

Discovering this kind of bug is much more
difficult than software bug
My teacher said "All the cause of failure, it is
impatience"

Chapter 2

mruby/c

What is mruby?

What is mruby?
github.com/mruby/mruby
Another implemantation of Ruby for general
embedded usage
Easily combined with system programming
like C/C++
e.g. ngx_mruby is a popular product of
mruby
Good for making command line tool as one-
binary executable

What is mruby/c?

What is mruby/c?
github.com/mrubyc/mrubyc
Yet another implementation of mruby
`/c` symbolizes compact, concurrent and
capability
Especially dedicated to one-chip
microcontroller

Bytecode is a common stuff
They are compiled by `mrbc` (mruby compiler)
and each VM execute bytecode

Bytecode?
A kind of intermediate representation
mruby bytecode is designed for mruby VM
mruby VM dynamically interprets the
bytecode and processes the application

HEX dump of bytecode

Looks like this if you compile
`puts "Hello World!"`

5249 5445 3030 3036 9a78 0000 0062 4d41 RITE0006.x...bMA
545a 3030 3030 4952 4550 0000 0044 3030 TZ0000IREP...D00
3032 0000 0060 0001 0004 0000 0000 000c 02...`..........
1001 4f02 002e 0100 0137 0167 0000 0001 ..O......7.g....
0000 0c48 656c 6c6f 2057 6f72 6c64 2100 ...Hello World!.
0000 0100 0470 7574 7300 454e 4400 0000 puts.END...
0008 ..

mruby on microcontroller
RTOS (Real-Time OS) manages mruby VMs in
order to realize multi tasking

mruby/c on microcontroller
mruby/c has its own mechanism to manage
multi tasks: rrt0

mruby and mruby/c
mruby mruby/c

v1.0.0 in Jan 2014 v1.0 in Jan 2017
for general
embedded software

for one-chip
microcontroller

mrbgems no package manager
RAM < 200KB ...(*) RAM < 40KB ...(*)

(*)...It depends on the situation

mruby/c's Virtual Machine
Much smaller than mruby's one

That's why mruby/c runs on smaller RAM

Accordingly, mruby/c has less functionality
than mruby and CRuby

How less?

How less? - For example
mruby/c doesn't have module, hence there
is no Kernel module
Then you must wonder how can you `#puts`?
In mruby/c, `#puts` is implemented in Object
class
mruby/c doesn't have #send, #eval, and
#method_missing, etc.

How less? - For example
The full list of mruby/c's classes

Array, FalseClass, Fixnum, Float, Hash,
Math, Mutex, NilClass, Numeric, Object,
Proc, Range, String, Symbol, TrueClass, VM

Despite the fact,
No problem in practical usage of
microcontroller
As far as IoT goes, mruby/c is enough Ruby
We can fully develop firmwares with these
features of mruby/c

How does mruby/c work
~/project/sample_project
├─ main.c
├─ mrblib
│ ├─ task_1.rb
│ └─ task_2.rb
└─ src
 ├─ task_1.c
 └─ task_2.c

task_*.c is compliled bytecode from
task_*.rb

How does mruby/c work
/* main.c */
#include "src/task_1.c"
#include "src/task_2.c"
// using 40KB RAM for VM heap in this case
#define MEMORY_SIZE (1024 * 40)
static uint8_t memory_pool[MEMORY_SIZE];
int main(void) {
 mrbc_init(memory_pool, MEMORY_SIZE);
 mrbc_create_task(task_1, 0);
 mrbc_create_task(task_2, 0);
 mrbc_run(); // 2 tasks run concurrently!
 return 0;
}

How does mruby/c work
We can run easily multiple VMs with
concurrency feature of rrt0
You might be disappointed to know you
have to write C

Yes, we have to write main.c
Don't worry, it's almost boilerplate code

Chapter 3

Application code
and tools

Application code

github.com/hasumikin/co2_demo

Application code
~/project/co2_demo
├─ main.c
└─ mrblib
 ├─ loops
 │ ├─ primary.rb
 │ └─ secondary.rb
 └─ models
 ├─ co2.rb
 ├─ led.rb
 └─ thermistor.rb

Application code
loops/primary.rb
$co2 = Co2.new # Makes it global so that secondary task can use it
$thermistor = $thermistor.new
led = Led.new(19) # 19 is a pin number which LED connects
while true
 co2 = $co2.concentrate
 if co2 > 2000 # When CO2 reaches fatal level
 5.times do # Turning LED on and off
 led.turn_on
 sleep 0.1
 led.turn_off
 sleep 0.1
 end
 else # Safe level
 led.turn_off # Turns off
 sleep 1
 end
end

Application code

How does Led#trun_on work?

Application code
models/led.rb
class Led
 def initialize(pin)
 @pin = pin
 gpio_init_output(@pin)
 turn_off
 end
 def turn_on
 gpio_set_level(@pin, 1) # high
 end
 def turn_off
 gpio_set_level(@pin, 0) # low
 end
end

Application code
/* a part of main.c */
#include "models/led.c"
static void c_gpio_init_output(mrbc_vm *vm, mrbc_value *v, int argc) {
 int pin = GET_INT_ARG(1);
 // Function of microcontroller's library
 gpio_set_direction(pin, GPIO_MODE_OUTPUT);
}
static void c_gpio_set_level(mrbc_vm *vm, mrbc_value *v, int argc){
 int pin = GET_INT_ARG(1);
 int level = GET_INT_ARG(2);
 gpio_set_level(pin, level); // Function of microcontroller's library
}
int main(void){
 ...
 mrbc_define_method(0, mrbc_class_object, "gpio_init_output",
 c_gpio_init_output);
 mrbc_define_method(0, mrbc_class_object, "gpio_set_level",
 c_gpio_set_level);
 ...
}

Application code
/* a part of main.c */
#include "models/co2.c"
static void c_get_co2(struct VM *vm, mrbc_value v[], int argc){
 uint8_t command[] = { // Command to take CO2
 0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79
 };
 uart_write_bytes(uart_num, (const char*)command, 9);
 // ↑Write then ↓Read data
 uint8_t data[10];
 int length = 0;
 length = uart_read_bytes(uart_num, data, length, 10);
 mrbc_value array = mrbc_array_new(vm, 9); // mrubyc's variable
 for(int i = 0; i < 9; i++) {
 mrbc_value value = mrbc_fixnum_value(data[i]);
 mrbc_array_set(&array, i, &value); // Adding a value to array
 }
 SET_RETURN(array); // Returning the array object to mruby
}
int main(void){
 ...
 mrbc_define_method(0, mrbc_class_object, "get_co2", c_get_co2);
 ...
}

Application code
models/co2.rb
class Co2
 def concentrate
 res = get_co2
 # checks if the sensor works
 if res[0] == 255 && res[1] == 134
 res[2] * 256 + res[3]
 else
 0
 end
 end
end

Application code
Trivial tip to reduce memory usage

C function can return String instead of Array
`mrbc_array_new` will allocate larger memory
than `mrbc_string_new`
So, you can use String instead of Array if
memory becomes short
Remember STRING of C is just an array of char
and '\0'

Application code
loops/secondary.rb
http_client = HttpClient.new("http://data.server")
while true
 co2 = $co2.concentrate
 temperature = $thermistor.temperature
 if co2 > 0 # No trouble
 data = "co2=#{co2}&temperature=#{temperature}"
 http_client.post(data)
 sleep 180
 else # A trouble happens?
 sleep 3 # Or you can retry
 end
end

Dev tools for mruby/c

Dev tools for mruby/c
mrubyc-utils
mrubyc-test
mrubyc-debugger

Dev tools for mruby/c

I am trying to make mruby/c development
Rubyish

Rubyish? - IMHO
Unix/Linux
Command line
No-IDE (as far as possible)

Rubyish? - IMHO
Unix/Linux
Command line
No-IDE (as far as possible)

Taking full advantage of
our Laptop and Ruby World

mrubyc-utils
github.com/hasumikin/mrubyc-utils
One-binary tool made with mruby
Helps to install boilerplate of application
Utility subcommands like...

mrubyc-utils
$ mrubyc-utils classes
- Array
- FalseClass
- Fixnum
- Float
- Hash
- Math
- Mutex
- NilClass
- Numeric
- Object
- Proc
- Range
- String
- Symbol
- TrueClass
- VM

mrubyc-utils
$ mrubyc-utils methods --class=array
Array
- + - inspect
- << - join
- [] - last
- []= - length
- at - max
- clear - min
- collect - minmax
- collect! - new
- count - pop
- delete_at - push
- dup - shift
- each - size
- each_index - to_s
- each_with_index - unshift
- empty? < Object
- first - !
- index ...

mrubyc-test
github.com/mrubyc/mrubyc-test
Unit testing framework
A RubyGem implemented with CRuby
Supports stub and mock
Official test tool of mruby/c dev team

mrubyc-test
Gathers information from app and test code
Internally generates stub and mock methods
Makes all-in-one script: test.rb

mrubyc-debugger
github.com/hasumikin/mrubyc-debugger
Debugger for mutiple infinite loops

DEMO

github.com/hasumikin/
mrubyc-debugger

DEMO

How is CO2 going?

DEMO (added after the Conf)

Conclusion

Conclusion

You should
refresh air 💨

Thank you!

