
IoT workshop for
firmware programming
with ESP32 and mruby/c
HASUMI Hitoshi (@hasumikin)

Monstar Lab, Matsue
March 16, 2019 in Matsue, Japan
May 6, 2019 in Warszawa, Polska
May 15, 2019 in Kraków, Polska

Cześć!

about me
HASUMI Hitoshi
@hasumikin

Ruby 💎
Sake 🍶
Soba 🍜
Coffee ☕

about me

about me

about me

message from Matz

video
src = images/matz.mp4

agenda
we will learn how to start to make IoT
product with Ruby

assumed attendees are software
programmers

ESP32 microcontroller as the platform

mruby/c (and C) as the firmware
language

we will iterate some combinations of
lecture and hands-on

agenda
we have 3 to 4 hours 😨

no worry, we will take several breaks

a short break

enquête

enquête

✋ please raise your hand ✋
✋ if you are a ✋

✋ firmware programming newbie ✋

enquête

✋ please raise your hand ✋
✋ if you don't have ✋

✋ any experience of mruby ✋

enquête

✋ please raise your hand ✋
✋ if you don't have ✋

✋ much experience of C language ✋

setup your laptop
we have to install ESP-IDF and some
dependent tools in order to develop
mruby/c firmwares for ESP32

the most important thing will be USB.
we will write our firmware into ESP32
through USB cable

setup your laptop - Linux or
macOS

using Linux distributions or macOS
(as a host machine) is the easiest way

less USB problem

I'm not sure but docker will not work
because of USB problem

setup your laptop - Windows
you can choose both Windows
Subsystem for Linux (WSL) and MSYS2

I recommend you to use WSL if your OS is
Windows10 (64 bit) as compiling on WSL is
much faster than MSYS2

WSL
you should use WSL if your OS is 64bit of
Win10 Pro

setup your laptop - Windows
MSYS2

strongly recommended of using zipped
one which Espressif Systems maintenances

besides, note that only 32 bit version of
MSYS2 is available regardless of whether
your Windows is 64 bit or 32 bit

Docker for Windows
it appears not to work so far

but please tell me if it works

setup your laptop - VM
I (hasumi) use Linux Mint with
VirtualBox on Windows 10 Professional

but some people say that virtual
environments tend to have problems
around USB

setup your laptop

more information on

https://github.com/hasumikin
/IoT_workshop

setup your laptop

please tell me if you have any doubt
during the hands-on

Hands On 01

Hello mruby/c World!

open the URL
github.com/hasumikin/IoT_workshop

and find the link
Hands on 01

what is microcontroller?
if you are not familiar with
microcontroller, this section is very
important to grab overview what we do
in this workshop

one-chip microcontroller
a single IC chip
consists of CPU(MPU),
RAM, ROM and
programmable GPIOs

`programmable`
means user can
configure the role
of the pins

moduled microcontroller
additional instruments
like WiFi communication
module combined
with one-chip
microcontroller

moduled microcontroller

"esp32_hardware_design_guidelines_en.pdf esp32_datasheet_en.pdf"

development board (devkit)
useful equipments like
USB adaptor and power
regulator combined
with microcontroller
for experimental work

generally has 2.54mm
(=1/10inch) pitch pins
to be fit with
breadboard

what is microcontroller?
what we call as `microcontroller`
depends on the situation

I call the development board as
`microcontroller` in this workshop

you may have to treat `one-chip
microcontroller` as `microcontroller` if
you plan for producing an IoT hardware

Hands On 02

Hello ESP32 World!

open the URL
github.com/hasumikin/IoT_workshop

and find the link
Hands on 02

a short break

peripherals
peripheral is an important concept of
microcontroller

high-end microcontroller has rich
peripherals and low-end one has less

peripherals

"esp32_datasheet_en.pdf"

peripherals
GPIO (General Purpose Input/Output)

GPIO is a defining characteristic of
microcontroller

GPIO basically has values of only 0 and 1
(digital value)

analog value will be mentioned later

usecases of Input:
switch as an user interface, getting sensor value

usecases of Output:
LED as a display, sending message to modem

peripherals
ADC (analog to digital converter) and
DAC (vice versa)

ADC converts analog value such as
microphone input into digital value that
computer can deal with

DAC converts digital value such as sound
data of MP3 into analog output in order to
play back the music on loud speaker

peripherals
Raspberry Pi does neither have ADC nor
DAC

we can add an independent ADC part if
we need it

from "http://akizukidenshi.com/catalog/g/gI-02584/"

today's parts
breadboard

resistor

LED

thermistor

breadboard (protoboard)
wired internally by 2.54 mm pitch so that
we can experiment without soldering

from "https://ht-deko.com/arduino/breadboard.html"

registor & Ohm's law
if the voltage across the both ends of
10kOhm resistor is 3V, the current will be
0.3mA

3 / 10k = 3 / 10000 = 0.0003A = 0.3mA

LED

A light-emitting diode (LED) is a
semiconductor light source that
emits light when current flows
through it.

[「WIKIPEDIA」より引用]

LED - datasheet

from "http://akizukidenshi.com/download/ds/optosupply/
OSXXXX3Z74A_VER_A1.pdf"

LED & Ohm's law
(3.3 - 2.1) / 330 = 0.0036A = 3.6mA

LED & GPIO
small LED can be lighten by GPIO

but instruments like huge LED which
requires high current can not be driven
even if its nominal voltage is less than
3.3V

because microcontroller has some limit
of supplying amount of electric current

incorrect usage may break your
microcontroller

Hands On 03

Blinking LED

open the URL
github.com/hasumikin/IoT_workshop

and find the link
Hands on 03

hint: you should use a blue resistor

a short break

today's parts (again)
breadboard

resistor

LED

thermistor

thermistor

A thermistor is a type of resistor whose
resistance is dependent on
temperature, more so than in standard
resistors.

[「WIKIPEDIA」より引用]

thermistor

from "https://www.allaboutcircuits.com/projects/measuring-
temperature-with-an-ntc-thermistor/"

thermistor - approximation

thermistor - datasheet

from "https://www.mouser.com/datasheet/2/362/
semitec_atthermistor-1202913.pdf"

thermistor - approximation
this is CRuby
include Math

according to the datasheet
B = 3_435 # from datasheet
To = 25 # from datasheet
Rref = 10_000 # arbitrary but fixed

def temperature(r)
 1.to_f / (1.to_f / B * log(r.to_f / Rref)
 + 1.to_f / (To + 273)) - 273
end

if resistance of thermistor is 12kOhm
puts temperature(12_000)

=> 20.35988998853088

thermistor & Ohm's law

Hands On 04

Taking temperature

open the URL
github.com/hasumikin/IoT_workshop

and find the link
Hands on 04

hint: you should use a brown resistor

a short break

what is mruby/c?
github.com/mrubyc/mrubyc

yet another implementation of mruby

`/c` symbolizes compact,
concurrent and capability

especially dedicated to
one-chip microcontroller

mruby and mruby/c
mruby mruby/c

v1.0.0 in Jan 2014 v1.0 in Jan 2017
for general
embedded
software

for one-chip
microcontroller

RAM < 400KB RAM < 40KB
sometimes mruby is still too big to run
on microcontroller

both mruby and mruby/c
bytecodes are compiled by `mrbc` and VM
executes the bytecode

bytecode
a kind of intermediate representation

virtual machine dynamically interprets the
bytecode and processes the program

mruby on microcontroller
RTOS (Real-Time OS) manages mruby
VMs. RTOS has features like multi tasking

mruby/c on microcontroller
mruby/c has its own mechanism to
manage the runtime: rrt0

mruby/c - virtual machine (VM)
much smaller than mruby's one

that's why mruby/c runs on smaller RAM

accordingly, mruby/c has less
functionality than mruby

how less?

how less? - for example
mruby/c doesn't have module, hence
there is no Kernel module

then you must wonder how can you
`#puts`?

in mruby/c, `#puts` is implemented in
Object class

how less? - for example
mruby/c doesn't have #send, #eval, nor
#method_missing

moreover, mruby/c neither have your
favorite features like TracePoint nor
Refinements 😞

how less? - actually
the full list of mruby/c's classes

Array, FalseClass, Fixnum, Float, Hash,
Math, Mutex, NilClass, Numeric,
Object, Proc, Range, String, Symbol,
TrueClass, VM

despite the fact,
no problem in practical use of
microcontroller

as far as IoT go, mruby/c is enough
Ruby as I expect

we can fully develop firmwares with
features of mruby/c

Hands On 05

Multi-tasking with mruby/c

open the URL
github.com/hasumikin/IoT_workshop

and find the link
Hands on 05

conclusion

conclusion

All you need is Ohm's law

Thank you!

