
mruby/c
The smallest Ruby
implementation for

microcontrollers
HASUMI Hitoshi @hasumikin

May 6, 2019 in Warszawa
May 14, 2019 in Kraków

Cześć!

about me
HASUMI Hitoshi
@hasumikin

live in Matsue city,
a holy place of Ruby

Sake 🍶
Soba 🍜
Coffee ☕

about me

about me

message from Matz

video
src = images/video.mp4

agenda
terminology

about my IoT project

mruby and mruby/c

how does mruby/c work

actual source code of my project

development environment

terminology

terminology
mruby/c

tha language I will talk about today

I say mrubyc as /c is hard to pronounce

microcontroller
small computer contains CPU, memory and
programmable I/O peripherals

in this talk, microcontroller is distinguished
from single board computer like Raspberry
Pi

terminology
RTOS

Real-time OS. usually used for
microcontroller

task
almost equivalent to `Thread` in linux. we
say `task` in microcontroller world

terminology
旭日酒造(Aasahi-shuzo)

shuzo means Sake brewery

one of the best Japanese Sake brewery

Asahi-beer(famous for SUPER DRY) has no
concern with Asahi-shuzo

Aasahi-shuzo and I make IoT system using
mruby/c

why microcontroller?
I never use single board computer like
Raspberry Pi for production
environment.

why microcontroller?
it starts immediately right after plugged
in

end users, brewery workers in my case,
can use it simply like home electical things

you can narrow security issue list
many a malware aims at Linux or Windows
platform as a target

you don't need to consider unnecessary
deamon

you don't need to do `apt upgrade`

why microcontroller?
low energy

rarely overheated

many choices of power supply

mass production
you can choose appropriate chipset
(number of GPIOs, memory size, etc.) for
your application

cost advantage for parts supply and
subcontractor manufacturing

which microcontroller?

which microcontroller?
CYPRESS PSoC5LP

32 bit Arm Cortex-M3 CPU

Flash: 256KB

SRAM: 64KB
64KB is the target size
of mruby/c

which microcontroller?

Espressif ESP-WROOM-32 (ESP32)
32 bit dual core LX6 CPU

Flash: 4MB

SRAM: 520KB

about my IoT project

about my IoT project
IoT system for Asahi-shuzo

delivered to actual brew work in
January 2018

devices post temperature of Sake
materials in brewing, surrounding
temperature and humidity to server

data is displayed on smartphone app

about my IoT project

about my IoT project

about my IoT project
what were difficult about mruby/c?

we can neither do step execution nor
look into appropriate memory address
of mruby/c's variables

so many troubles in IoT
hard to find why the application doesn't
work well

mruby/c was growing
bugs, lack of features, docs and examples

about my IoT project
so, was mruby/c bad?

about my IoT project
so, was mruby/c bad? - NO

IoT at work makes you hurry
you have to go back and forth between
dark 10℃ storage cellar and humid 35℃
manufacturing room

brewery workers run around

you have to amend your firmware with your
small laptop in 10 minutes

you will thank Ruby's descriptiveness and
agility

today's demo
CO

2
 concentration

400ppm : atmospheric

1000ppm : your programming speed
decreases

1500ppm : tomatoes 🍅 may grow well

> 2000ppm : sleepy, headache

> 40000ppm : 💀

today's demo
my device keeps taking CO

2

concentration

I will prove that it is due to CO
2
 if

someone slept while I speaking

so many troubles in IoT

so many troubles in IoT
peripheral equipments (☆)

circuit and wiring design

printed circuit board = PCB

soldering (☆)

C, mruby and mruby/c (☆)

network

☆...I will explain these topics today

peripheral equipments

peripheral equipments
it is very important to check the
following before writing application
code

equipment like sensor or communication
module works as its spec sheet

whether the equipment is not broken
(sometimes broken by soldering 😭)

unless you will regret
so...

peripheral equipments

Raspberry Pi & CRuby are great for pre-
prototyping

use breadboard or make PCB for test like this
photo

peripheral equipments
ex) CRuby for serial communication test

notice this is CRuby for RasPi
require 'rubyserial'
require 'timeout'
BAUDRATE = 9600 # match with your instrument
sp = Serial.new '/dev/serial0', BAUDRATE, 8
loop do
 puts '[command]'
 command = gets
 sp.write command.sub("\n", "\r") # replace LF if needed
 sleep 0.1
 result = ''
 begin
 Timeout.timeout(10) do
 loop do
 line = sp.read(128)
 break if line == '' && result != ''
 result << line
 sleep 0.1
 puts '=> ' + result
 rescue Timeout::Error
 puts 'timeout!'

peripheral equipments
ex) CRuby for serial communication test

$ serial_communication_test.rb
[command]
AT # command
=> OK # response
[command]
AT+CIMI # command
=> 123456789012 # response
[command]
AT+XXX # command
=> error # response

soldering

soldering

it may work even if you leave a pin
unsoldered on surface mounting

because the pin touches circuit's surface

then, it will not work one day

soldering

discovering this kind of bug is much more
difficult than software bug

my teacher said
"all the cause of failure, it is impatience"

what is mruby?

what is mruby?
github.com/mruby/mruby

another implemantation of Ruby for
embedded usage

easily being called from C/C++

ngx_mruby is a popular one

good for command line tools as one-
binary executable

what is mruby/c?

what is mruby/c?
github.com/mrubyc/mrubyc

yet another implementation of mruby

`/c` symbolizes compact, concurrent
and capability

especially dedicated to one-chip
microcontroller

mruby and mruby/c
mruby mruby/c

v1.0.0 in Jan 2014 v1.0 in Jan 2017
for general
embedded
software

for one-chip
microcontroller

RAM < 400KB RAM < 40KB
sometimes mruby is still too big to run
on microcontroller

both mruby and mruby/c
bytecodes are compiled by `mrbc` and VM
executes the bytecode

bytecode
a kind of intermediate representation

virtual machine dynamically interprets the
bytecode and processes the program

mruby on microcontroller
RTOS (Real-Time OS) manages mruby
VMs. RTOS has features like multi tasking

mruby/c on microcontroller
mruby/c has its own mechanism to
manage the runtime: rrt0

mruby/c - virtual machine (VM)
much smaller than mruby's one

that's why mruby/c runs on smaller RAM

accordingly, mruby/c has less
functionality than mruby

how less?

how less? - for example
mruby/c doesn't have module, hence
there is no Kernel module

then you must wonder how can you
`#puts`?

in mruby/c, `#puts` is implemented in
Object class

how less? - for example
mruby/c doesn't have #send, #eval, nor
#method_missing

moreover, mruby/c neither have your
favorite features like TracePoint nor
RubyVM::AST 😞

how less? - actually
the full list of mruby/c's classes

Array, FalseClass, Fixnum, Float, Hash,
Math, Mutex, NilClass, Numeric,
Object, Proc, Range, String, Symbol,
TrueClass, VM

despite the fact,
no problem in practical use of
microcontroller

as far as IoT go, mruby/c is enough
Ruby as I expect

we can fully develop firmwares with
features of mruby/c

how does mruby/c work

how does mruby/c work

~/sample_project
├── main.c
├── mrblib
│ ├── task_1.rb
│ └── task_2.rb
└── src
 ├── task_1.c
 └── task_2.c

task_*.c are compliled code from
task_*.rb

how does mruby/c work

/* main.c */
#include "src/task_1.c"
#include "src/task_2.c"
// use 30KB RAM for VMs in this case
#define MEMORY_SIZE (1024*30)
static uint8_t memory_pool[MEMORY_SIZE];
int main(void) {
 mrbc_init(memory_pool, MEMORY_SIZE);
 mrbc_create_task(task_1, 0);
 mrbc_create_task(task_2, 0);
 mrbc_run(); // 2 tasks run concurrently!
 return 0;
 // we will not write `main loop` in main.c
}

how does mruby/c work
we can run easily multiple VMs with
concurrency due to rrt0

you might be disappointed to know you
have to write C

yes, we have to write main.c

don't worry, it's almost boilerplate code

how does mruby/c work
~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── hal_esp32
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h

how does mruby/c work
~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h # hal for POSIX
├── hal_psoc5lp
│ └── hal.h # hal for PSoC5LP
├── hal_esp32
│ └── hal.h # hal for ESP32
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h

how does mruby/c work
~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── hal_esp32
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h # runtime scheduler
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h

how does mruby/c work
~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── hal_esp32
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h # this gives you hints about variable
├── vm.h
└── vm_config.h

how does mruby/c work
~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── hal_esp32
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h # edit this if needed

debugging

debugging
we can neither do step execution nor
look into memory to see variables when
we use mruby/c in general

we should prepare a way of debugging
before writing app code

let's go with old-fashioned 'print
debug'. it'll be almost enough

debugging
/* a part of main.c */
// create serial console with UART for debug print
static void c_debugprint(mrb_vm *vm, mrb_value *v, int argc){
 int total, used, free, fragment;
 mrbc_alloc_statistics(&total, &used, &free, &fragment);
 console_printf(
 "Memory total:%d, used:%d, free:%d, fragment:%d\n",
 total, used, free, fragment);
 unsigned char *key = GET_STRING_ARG(1);
 unsigned char *value = GET_STRING_ARG(2);
 console_printf("%s:%s\n", key, value);
}
int main(void) {
 ...
 mrbc_define_method(0, mrbc_class_object, "debugprint", c_debugprint);
 ...
}

debugging
mruby
pi = 3.14
debugprint('Pi', pi.to_s)

=> # print in serial console like 'PuTTY' connecting USB
 Memory total:30000, used:20000, free:10000, fragment:3
 Pi:3.14

actual source code

actual source code

github.com/hasumikin/co2-demo

actual source code

~/co2-demo
├── main.c
└── mrblib
 ├── loops
 │ ├── master.rb
 │ └── slave.rb
 └── models
 ├── co2.rb
 ├── led.rb
 └── thermistor.rb

actual source code
loops/master.rb
$co2 = Co2.new # Makes it global so that another task
 # can use it
led = Led.new(19) # 19 is a pin number which LED connects
while true
 co2 = $co2.concentrate
 if co2 > 2000 # When CO2 reaches fatal level
 5.times do # Turning LED on and off
 led.turn_on
 sleep 0.1
 led.turn_off
 sleep 0.1
 end
 elsif co2 > 1500 # CO2 reaches warning level
 led.turn_on # Just keeps turn it on
 sleep 1
 else # Safe level
 led.turn_off # Turns off
 sleep 1
 end
end

actual source code

how does Led#trun_on work?

actual source code

models/led.rb
class Led
 def initialize(pin)
 @pin = pin
 gpio_init_output(@pin)
 turn_off
 end
 def turn_on
 gpio_set_level(@pin, 1)
 end

actual source code
/* a part of main.c */
#include "models/led.c"
static void c_gpio_init_output(mrb_vm *vm, mrb_value *v,
 int argc) {
 int pin = GET_INT_ARG(1);
 gpio_set_direction(pin, GPIO_MODE_OUTPUT);
}
static void c_gpio_set_level(mrb_vm *vm, mrb_value *v,
 int argc){
 int pin = GET_INT_ARG(1);
 int level = GET_INT_ARG(2);
 gpio_set_level(pin, level);
}
int main(void){
 ...
 mrbc_define_method(0, mrbc_class_object, "gpio_init_output",
 c_gpio_init_output);
 mrbc_define_method(0, mrbc_class_object, "gpio_set_level",
 c_gpio_set_level);
 ...
}

actual source code
/* a part of main.c */
#include "models/co2.c"
static void c_get_co2(struct VM *vm, mrbc_value v[], int argc){
 uint8_t command[] = { // Command to take CO2
 0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79
 };
 uart_write_bytes(uart_num, (const char*)command, 9);
 // ↑Write then ↓Read data
 uint8_t data[10];
 int length = 0;
 ESP_ERROR_CHECK(uart_get_buffered_data_len(uart_num, (size_t*)&length));
 length = uart_read_bytes(uart_num, data, length, 10);
 int i;
 mrb_value array = mrbc_array_new(vm, 9); // mrubyc's variable
 for(i = 0; i < 9; i++) {
 mrb_value value = mrb_fixnum_value(data[i]);
 mrbc_array_set(&array, i, &value); // Adding a value to array
 }
 SET_RETURN(array); // Returning the array to mruby
}
int main(void){
 ...
 mrbc_define_method(0, mrbc_class_object, "get_co2", c_get_co2);
 ...
}

actual source code

models/co2.rb
class Co2
 def concentrate
 res = get_co2
 # checks if the sensor works
 if res[0] == 255 && res[1] == 134
 res[2] * 256 + res[3]
 else
 0
 end
 end
end

actual source code
by the way,

C function can return String instead of
mruby/c Array

`mrbc_array_new` will allocate larger
memory than `mrbc_string_new`

so, you can use String instead of Array if
memory becomes short

actual source code
loops/slave.rb
while true
 co2 = $co2.concentrate
 temperature = $thermistor.temperature
 if co2 > 0
 data = "co2=#{co2}&temperature=#{temperature}"
 puts "DATASEND:#{data}"
 sleep 300
 else
 sleep 3
 end
end

development environment

development environment
PSoC Creator for PSoC5LP

development environment
the env depends on microcontroller

IDE is your env if you use PSoC5LP
you can code mruby on any text editor

IDE is almost mandatory to configure hardware

terminal based work is the one if you use
ESP32

dev tools for mruby/c

dev tools for mruby/c
mrubyc-utils

mrubyc-test

mrubyc-debugger

mrubyc-utils
github.com/hasumikin/mrubyc-utils

one-binary tool made with mruby

helps to install boilerplate of application

shows mruby/c's classes and methods

mrubyc-utils
your_project $ mrubyc-utils --help
Usage: mrubyc-utils COMMAND [ARGS]

 install Install mruby/c repo into your local and setup templates.
 Please run this command at the top directory
 of your firmware project.
 update Update mruby/c repo to the newest **master** branch.
 checkout Checkout specified tag or commit of mruby/c repo.
 -t | --tag [required] You can specify anything that
 `git checkout` will accept.
 tag Show all tags of mruby/c repogitory that you installed.
 classes Show all the classes that are defined in
 mruby/c's virtual machine.
 methods Show all the methods that are available
 in a class of mruby/c.
 -c | --class [required] You have to specify class name
 compile Compile your mruby source into C byte code.
 This command is for PSoC Creator project. Use make command instead
 if your project is dedicated to ESP32 or POSIX
 -w | --watch [optional] Monitoring loop runs and will
 compile mruby source every time you touched it.

-v | --version Show version.
-h | --help Show usage. (this message)

Dependencies:
 git
 mrbc (mruby compiler)

mrubyc-utils
your_project $ mrubyc-utils classes
- Array
- FalseClass
- Fixnum
- Float
- Hash
- Math
- Mutex
- NilClass
- Numeric
- Object
- Proc
- Range
- String
- Symbol
- TrueClass
- VM

mrubyc-utils
your_project $ mrubyc-utils methods --class=array
Array
- + - inspect
- << - join
- [] - last
- []= - length
- at - max
- clear - min
- collect - minmax
- collect! - new
- count - pop
- delete_at - push
- dup - shift
- each - size
- each_index - to_s
- each_with_index - unshift
- empty? < Object
- first - !
- index ...

mrubyc-test
github.com/mrubyc/mrubyc-test

unit testing framework

RubyGem implemented with CRuby
instead of mruby

supports stub and mock

official tool of mruby/c dev team

mrubyc-test
gathers information of test cases by CRuby
metaprogramming power

generates stub and mock methods

makes all-in-one script: test.rb

mrubyc-debugger
github.com/hasumikin/mrubyc-
debugger

RubyGem

debugger for infinite loop

(anime gif DEMO)

github.com/hasumikin/
mrubyc-debugger

summary

summary
mruby/c is the smallest implementation
of Ruby

summary
mruby/c is the smallest implementation
of Ruby

we can write firmwares for
microcontrollers with mruby/c

summary
mruby/c is the smallest implementation
of Ruby

we can write firmwares for
microcontrollers with mruby/c

it has a short history though, it's ready
for production with the Rubyish
ecosystem like testing tool

(DEMO)

CO
2

(added after conference)

(added after conference)

the ventilation facility
of Browar Lubicz is pretty good 👍

conclusion

conclusion

You should refresh air

thank you!

