
Practical mruby/c firmware
development with CRuby

HASUMI Hitoshi @hasumikin
RubyKaigi 2019
April 19, 2019

Fukuoka International Congress Center

Sake IoT project

Sake IoT project

what is mruby/c?
github.com/mrubyc/mrubyc

one of the mruby family

`/c` symbolizes compact,
concurrent and capability

especially dedicated to
one-chip microcontroller

mruby and mruby/c
mruby mruby/c

v1.0.0 in Jan 2014 v1.0 in Jan 2017
for general embedded
software

for one-chip
microcontroller

RAM < 400KB RAM < 40KB
sometimes mruby is still too big to run on
microcontroller

both mruby and mruby/c
bytecodes are compiled by `mrbc`
virtual machine (VM) executes the bytecode

bytecode
a kind of intermediate representation

virtual machine dynamically interprets the bytecode
and processes the program

mruby on microcontroller
RTOS (Real-Time OS) manages mruby VMs. RTOS has
features like multi tasking, etc.

mruby/c on microcontroller
mruby/c has its own mechanism to manage the
runtime: rrt0

mruby/c - virtual machine (VM)
much smaller than mruby's one

that's why mruby/c runs on smaller RAM

accordingly, mruby/c has less functionality than
mruby

how less?

how less? - for example
mruby/c doesn't have module, hence there is no
Kernel module

then you must wonder how can you `#puts`?

in mruby/c, `#puts` is implemented in Object class

how less? - for example
mruby/c doesn't have #send, #eval, nor
#method_missing

moreover, mruby/c neither have your favorite
features like TracePoint nor Refinements 😞

how less? - actually
the full list of mruby/c's classes

Array, FalseClass, Fixnum, Float, Hash, Math,
Mutex, NilClass, Numeric, Object, Proc, Range,
String, Symbol, TrueClass, VM

despite the fact,
no problem in practical use of microcontroller

as far as IoT go, mruby/c is enough Ruby as I expect

we can fully develop firmwares with features of
mruby/c

So

というわけで

Today's agenda
きょうはこんな話をします

Little more Rubyish
もうちょいRubyっぽくやろう

mruby/c firmware is made up of three parts
1) peripheral API wrapper (C)

2) business logic (mruby)

3) infinite loop (mruby)

mruby/c firmware is made up of three parts
1) peripheral API wrapper (C)

2) business logic (mruby) - model

3) infinite loop (mruby) - controller

things make situation difficult
peripheral API needs real hardware

business logic needs peripheral APIs really work

infinite loop needs real data from business logic

mruby/c firmware is made up of three parts
1) peripheral API wrapper (C)

2) business logic (mruby)

3) infinite loop (mruby)

peripheral API wapper
https://rubykaigi.org/2018

mruby/c firmware is made up of three parts
1) peripheral API (C)

2) business logic (mruby)

3) infinite loop (mruby)

mruby/c firmware is made up of three parts

mruby/c firmware is made up of three parts

mruby/c firmware is made up of three parts

mruby/c firmware is made up of three parts

mruby/c firmware is made up of three parts

by the way,

fuga?

what is fuga?

will calling fuga raise error?

methods still not implemented
we often should write business logic without hitting
peripherals

it will cost a lot in some case

it is possible the design of peripheral details might
not be finished yet

what you expect in this situation?

Stub

Mock

Test Driven
Development for
Embedded Ruby

(DEMO)

github.com/hasumikin/mrubyc-test

when I started to use mruby/c
there is no testing tool

even mruby/c itself sometimes regressed 😨

I had difficulties of writing my application

so, why did I use mruby/c?

DESTINO - 運命

Anyway, I started to create
mrubyc-test.gem

mrubyc-test.gem
it's the first testing tool for mruby/c ever

I wanted to go Rubyish in order to make it

but mruby/c doesn't have enough features to make
testing tool as you saw just before

mrubyc-test.gem - designed as
a RubyGem, implemented in CRuby instead of
mruby

Test::Unit-like API

supports stub and mock
now you can test your business logic without
implementing peripheral functions like #fuga

mrubyc-test.gem - stub
app code
class Sample
 attr_accessor :result
 def do_something(arg)
 @result = arg + still_not_defined_method
 end
end

test code
class SampleTest < MrubycTestCase
 def stub_case
 sample_obj = Sample.new
 stub(sample_obj).still_not_defined_method { ", it must be Ruby" }
 sample_obj.do_something("If it behaves like Ruby")
 assert_equal "If it behaves like Ruby, it must be Ruby", sample_obj.result
 end
end

mrubyc-test.gem - mock

app code
class Sample
 def do_other_thing
 to_be_hit()
 end
end

test code
class SampleTest < MrubycTestCase
 def mock_case
 sample_obj = Sample.new
 mock(sample_obj).to_be_hit
 sample_obj.do_other_thing
 end
end

it was my personal tool

github.com/hasumikin/mrubyc-test

but already abandoned because

github.com/hasumikin/mrubyc-test

now it's official 🎉

github.com/mrubyc/mrubyc-test

mrubyc-test.gem
adopted as the testing tool for mruby/c itself

so now you can safely send pull request to mruby/c

you can write mruby/c application with confidence

mrubyc-test.gem - internal
the gist is creating test.rb by `test code generator`
implemented in CRuby

mrubyc-test.gem - how to make the test.rb
gathers information of test cases by
#method_added

I learned this technique from Test::Unit

generates stub methods and mock methods

makes all-in-one script: test.rb
all the indispensable mechanism of assertion, stub,
mock, app code and test code get together

mrubyc-test.gem - Module#method_added
class MrubycTestCase
 def self.method_added(name)
 return false if %i(method_missing setup teardown).include?(name)
 location = caller_locations(1, 1)[0]
 path = location.absolute_path || location.path
 line = location.lineno
 @@added_methods << {
 method_name: name.to_s,
 path: File.expand_path(path),
 line: line
 }

mrubyc-test.gem

class SampleTest < MrubycTestCase
 desc "stub test sample"
 def stub_case # hooks #method_added
 sample_obj = Sample.new
 stub(sample_obj).still_not_defined_method {
 ", it must be Ruby"
 }

test code inherits MrubycTestCase to be analyzed

mrubyc-test.gem -
BasicObject#method_missing

class MrubycTestCase
 def method_missing(method_name, *args)
 case method_name
 when :stub, :mock
 location = caller_locations(1, 1)[0]
 Mrubyc::Test::Generator::Double.new(
 method_name, args[0], location
)

mrubyc-test.gem - generated stub method

part of test.rb
class Sample
 def still_not_defined_method
 ", it must be Ruby"
 end
end

mrubyc-test.gem - template of stub

<% test_cases.each do |test_case| -%>
 <% test_case[:stubs].each do |stub| -%>
 class <%= stub[:class_name] %>
 attr_accessor <%= stub[:instance_variables] %>
 def <%= stub[:method_name] %>
 <% if stub[:return_value].is_a?(String) -%>
 "<%= stub[:return_value] %>"
 <% else -%>
 <%= stub[:return_value] %>
 <% end -%>
 end
 end
 <% end -%>

mruby/c firmware is made up of three parts
1) peripheral API (C)

2) business logic (mruby)

3) infinite loop (mruby)

mruby/c firmware is made up of three parts

we have multiple infinite loops
firmware programming is essentially thread
programming which consists of multiple infinite loops

they keep watch on status like user input, changing
sensor value and BLE/WiFi message, then display
some information to indicate internal status

the loops of mruby/c are
user space threads managed by mruby/c's runtime

/* main.c */
#define MEMORY_SIZE (1024 * 40) /* 40KB */
static uint8_t mrubyc_vm_pool[MEMORY_SIZE];
int main(void) {
 mrbc_init(mrubyc_vm_pool, MEMORY_SIZE);
 mrbc_create_task(watch_user_interace, 0);
 mrbc_create_task(change_display, 0);
 mrbc_create_task(watch_sensor_value, 0);
 mrbc_run();
}

threads of CRuby
correspond to native threads (with GVL)

def start_loops
 threads = []
 threads << Thread.new { watch_user_interface }
 threads << Thread.new { change_display }
 threads << Thread.new { watch_sensor_value }
 threads.each(&:join)
end

(DEMO)

github.com/hasumikin/mrubyc-debugger

mrubyc-debugger.gem
mrubyc-debugger runs mruby/c loop script as a
CRuby thread

it simultaneously shows which lines are being
executed

besides, it have to take over the debug print of the
script

in order to do that, we can use your favorite CRuby
features like ...

TracePoint

mrubyc-debugger.gem - TracePoint
tasks = Dir.glob(File.join(Dir.pwd, "mrubyc_loops_dir", "*.rb"))
TracePoint.new(:c_call, :call, :line) do |tp|
 number = nil
 caller_locations(1, 1).each do |caller_location|
 tasks.each_with_index do |task, i|
 number = i if caller_location.to_s.include?(File.basename(task))
 end
 if number
 @@mutex.lock
 event = {
 method_id: tp.method_id,
 lineno: tp.lineno,
 caller_location: caller_location,
 binding: tp.binding }
 $event_queues[number].push event
 @@mutex.unlock

Refinements

mrubyc-debugger.gem - Refinements

module DebugQueue
 refine Kernel do
 def puts(text)

$debug_queues[Thread.current[:index]] << {
 level: :debug,
 body: text }

assuming mruby/c loops use `#puts` for print
debug on serial console,

mrubyc-debugger takes it over to print on Curses
window

Curses

mrubyc-debugger.gem - Curses
include Curses
debug = $debug_queues[i].pop # took over by Refinements
wins[i][:out].addstr " #{debug[:level]} " + debug[:body]
event = $event_queues[i].pop # event info by TracePoint
(1..(wins[i][:src].maxy - 2)).each do |y|
 wins[i][:src].setpos(y, 1)
 if !@srcs[i][y]
 wins[i][:src].addstr ' ' * wins[i][:src].maxx
 else
 # hilighten current line
 wins[i][:src].attron(A_REVERSE) if y == event[:lineno]
 end
end
vars = {}
event[:tp_binding].local_variables.each do |var|
 vars[var] = event[:tp_binding].local_variable_get(var).inspect
end

Binding

mrubyc-debugger.gem - Binding

binding.local_variables
=> [:var_a, :var_b, ...]

binding.local_variable_get(:var_a)
=> "foo"

binding.local_variable_set(:var_a, "bar")
binding.local_variable_get(:var_a)
=> "bar"

summary

summary
mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem

summary
mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem
even if Matz hates test

summary
mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem
even if Matz hates test

mrubyc-debugger is a visualization tool of
concurrent mruby/c loop tasks powered by CRuby's
Thread

summary
mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem
even if Matz hates test

mrubyc-debugger is a visualization tool of
concurrent mruby/c loop tasks powered by CRuby's
Thread
no matter what Matz regrets

summary
at a glance, developing with mruby/c seems to be
very restricted due to lack of dynamic features

summary
at a glance, developing with mruby/c seems to be
very restricted due to lack of dynamic features

however, it will be more effective by using the
power of CRuby and our own tools

summary
at a glance, developing with mruby/c seems to be
very restricted due to lack of dynamic features

however, it will be more effective by using the
power of CRuby and our own tools

above all, Rubyish-terminal-based development is
fun!

me
HASUMI Hitoshi
@hasumikin

Monstar Lab, inc.
Shimane office

Sake 🍶
Soba 🍜
Coffee ☕

Thank you!

