- MONSTARLAB

Practical mruby/c firmware

development with CRuby
HASUMI Hitoshi @hasumikin

RubyKaigi 201 9 .
__ N PR e B —

(Lgress Center
2\=\0 Ay B

_
=] .o
=
l e

& Fukuoka Internatlonal

Sake IoT project

ot

= ST

e ————— -

“emenie gw%ﬁ? |

Sake IoT project

[————————— —

what is mruby/c?

o github.com/mrubyc/mrubyc

o one of the mruby family R

Ty 2 3 o

9 */c’ symbolizes compact, 1 ¥

om o W | 3 |

concurrent and capability £ o] if-,‘;aq

, : D g ot (S0

2 especially dedicated to @ fne

: . 54 -

One-Chlp microcontroller D & Abidd unugusu-’ 3\-
2 LA

mruby and mruby/c

mruby

mruby/c

v1.0.01n Jan 2014

v1.01n Jan 2017

for general embedded
software

for one-chip
microcontroller

RAM < 400KB

RAM < 40KB

2 sometimes mruby 1s still too big to run on

microcontroller

mruby and mruby/c

® bytecodes are compiled by mrbc
virtual machine (VM) executes the bytecode

mruby/c

e =

’ t k l’ftaSk\\
bytgcs:o&e by‘tecode, bytecode bytecodé

tasgt

bytecode

2 a kind of intermediate representation

9 virtual machine dynamically interprets the bytecode
and processes the program

| CRuby VM |<==input
tokenizer b ytECOde (YAISQ,V) =p OUtpUt

class Polish parser
etc.

def greet input
puts "Czesc!" D
. bytecode mruby VM — output

end —

mrbc - R input
(mruby compiler) bytECOde mru bylc VM =mmpp OUTPUT

mruby on microcontroller

2 RTOS (Real-Time OS) manages mruby VMs. RTOS has
features like multi tasking, etc.

’ taSk
bytecode

byfecode,

mruby/c on microcontroller

2 mruby/c has its own mechanism to manage the
runtime:

mruby/c

—-

task’ I
bytecode .bytecode
task-

mruby/ ¢ - virtual machine (VM)

o much smaller than mruby's one
9 that's why mruby/c runs on smaller RAM

9 accordingly, mruby/c has functionality than
mruby

=y

les

how

how 1c=5? - for example

o mruby/c doesn't have module, hence there 1s no
Kernel module

2 then you must wonder how can you #puts ?

o 1n mruby/c, #puts 1s implemented in Object class

how 1c=5? - for example

o mruby/c doesn't have #send, #eval, nor
#method_missing

2 moreover, mruby/c neither have your tfavorite
features like TracePoint nor Refinements

how 1===? - actually

2 the full list of mruby/c's classes

9 Array, FalseClass, Fixnum, Float, Hash, Math,
Mutex, NilClass, Numeric, Object, Proc, Range,
String, Symbol, TrueClass, VM

despite the fact,

2 no problem in practical use of microcontroller
2 as far as IoT go, mruby/c 1s enough Ruby as I expect

o we can fully develop firmwares with features of
mruby/c

Today's agenda
ILDIECALFEZLFET

Little more Rubyish
£ D5 &L Ruby 2 E<P5HD

=
—

-
_
BNW wr v o o e W W W

- 74 ; . \ ‘ ~ | ; o3 \ " 6" s
/ ’ A~ ;l__oy Yt g X 4 \h’ . \ S 3 e
’ i J v . o b‘ k g - -) . 3

?-
B
{
'i:
%
b
/
!
,g
|
|

mruby/ ¢ firmware is made up of three parts

o 1) peripheral API wrapper (C)
2 2) business logic (mruby)

2 3) infinite loop (mruby)

8 N

mruby/ ¢ firmware is made up of three parts

o 1) peripheral API wrapper (C)
2 2) business logic (mruby) -

2 3) infinite loop (mruby) -

8 N

things make situation difficult

o peripheral API needs hardware
2 business logic needs peripheral APls work
2 1nfinite loop needs data from business logic

3%

mruby/ ¢ firmware is made up of three parts

9 1)
2 2) business logic (mmruby)

2 3) infinite loop (mruby)

6K

peripheral API wapper
o https://rubykaigi.org/2018

JA

Firmware programming with mruby/c

We have a new choice to write firmware for microcomputers(microcontrollers

to introduce mruby/c firmware programming. And besides, my actual 0T proj

will be described. Since mruby/c is still a young growing tool, you will know the
can help it to become better.

Hitoshi HASUMI

@hasumon

»
immer of Monstar Lab at Shimane Presentgtlon MOte”OI

(Y Firmware programming with mruby/c

mruby/ ¢ firmware is made up of three parts

2]) peripheral API (C)
° 2)
2 3) infinite loop (mruby)

6K

mruby/ C-firmware is made up bf threepa'rts

infinite loop
foo = Foo.new
while true
1T foo.hoge ==
puts "SUCCESS!"
end
sleep 1
end

business logic
class Foo

def hoge
fuga_val = fuga
c_hoge(fuga_val)
end
end

/% peripheral API wrapper x/

static void c_hoge(mrb_vm xvm, mrb_value xv, int argc) {
int result;
result = peripheral_api_call(GET_INT_ARG(1));
SET_INT_RETURN(result);

}

mruby/ C-firmware is made up bf threepa'rts

infinite loop
foo = Foo.new
while true
1T foo.hoge ==
puts "SUCCESS!"

business logic
class Foo

def hoge
fuga_val = fuga
c_hoge(fuga_val)
end
end

/% peripheral API wrapper x/

static void c_hoge(mrb_vm xvm, mrb_value xv, int argc) {
int result;
result = peripheral_api_call(GET_INT_ARG(1));
SET_INT_RETURN(result);

}

mruby/ Cfirmware is made up Of threepa'rts

infinite loop
foo = Foo.new
while true
1T foo.hoge ¥= 1
puts "SUCCESS!”

business logic

def hoge
fuga_val = fuga
c_hoge(fuga_val)
end
end

/% peripheral API wrapper x/

static void c_hoge(mrb_vm xvm, mrb_value xv, int argc) {
int result;
result = peripheral_api_call(GET_INT_ARG(1));
SET_INT_RETURN(result);

}

mruby/ Cfirmware is made up Of threepa'rts

infinite loop
foo = Foo.new
while true
1T foo.hoge ¥= 1
puts "SUCCESS!”

business logic

def hoge
fuga_val = fuga
c_hoge(fuga_val)

/* peripheral API wragpper x
ctatircr vnid ~ hnoe <\/m mrh_value xV, int argc) {

result = peripheral_api_call(GET_INT_ARG(1));
SET_INT_RETURN(result);

}

mruby/ Cfirmware is made up Of threepa'rts

infinite loop
foo = Foo.new
while true
1T foo.hoge ¥= 1
puts "SUCCESS!"

business logic

def hoge
fuga_val = fuga
c_hoge(fuga_val)

/* peripheral API wragpper x
ctatircr vnid ~ hnoe <\/m mrh_value xV, int argc) {

result = peripheral_api_call(GET TNT ARG/TY)Y-
SET_INT_RETURN (r& .I .
}

by the way,

infinite loop
foo = Foo.new
while true

1T foo.hoge ¥= 1

- puts "SUCCESS!"

business logic

def hoge
fuga_val = fuga
c_hoge(fuga_val)
end
end

/% peripheral API wrapper x/

static void c_hoge(mrb_vm xvm, mrb_value xv, int argc) {
int result;
result = peripheral_api_call(GET_INT_ARG(1));
SET_INT_RETURN(result);

}

fuga?

infinite loop
foo = Foo.new
while true

1T foo.hoge ¥= 1

- puts "SUCCESS!"

business logic

def hoge
fuga_val = fuga
c_hoge(fuga_val)
end
end

/% peripheral API wrapper x/

static void c_hoge(mrb_vm xvm, mrb_value xv, int argc) {
int result;
result = peripheral_api_call(GET_INT_ARG(1));
SET_INT_RETURN(result);

}

what is fuga?

will calling fuga raise error?

infinite loop
foo = Foo.new
while true
1T foo.hoge ¥= 1
puts "SUCCESS!"

business logic

def hoge
fuga_val = fuga
c_hoge(fuga_val)
end
end

/% peripheral API wrapper x/

static void c_hoge(mrb_vm xvm, mrb_value xv, int argc) {
int result;
result = peripheral_api_call(GET_INT_ARG(1));
SET_INT_RETURN(result);

}

methods still not implemented

2 we often should write business logic without hitting
peripherals

9 1t will cost a lot in some case

9 1t 1s possible the design of peripheral details might
not be finished yet

o2 what you expect 1n this situation?

Test Driven

Development for
Embedded Ruby

(DEMO)

github.com/hasumikin/mrubyc-test

when I started to use mruby/c '

9 there 1s no
o even mruby/c itself sometimes regressed

o [had difficulties of writing my application

so, why did I use mruby/c?

1E fip

DESTINO

A ot 7
RN s i -
N ..qw%v
RARRP L 2 L

Anyway, |l started to create
mrubyc-test.gem

mr'ubyc-'test.gem '

2 1t's the first testing tool for mruby/c ever
o | wanted to go Rubyish in order to make 1t

2 but mruby/c doesn't have enough features to make
testing tool as you saw just betfore

mr'ubyc-'test.gem - designed as

2a , iImplemented in CRuby instead ot
mruby

9 Test::Unit-like API

2 supports stub and mock

9 now you can test your business logic without
implementing peripheral functions like

mrubyc-test.gem - stub

Sample
attr_accessor :result

(arg)
@result = arg + still_not_defined_method

SampleTest < MrubycTestCase

sample_obj = Sample.new

stub(sample_obj).still_not_defined_method { ", it must be Ruby” }
sample_obj.do_something("If it behaves like Ruby’)

assert_equal "If it behaves like Ruby, it must be Ruby”, sample_obj.result

mr'ub'yc-'test.gem - mock

Sample

to_be_hit()

SampleTest < MrubycTestCase

sample_obj = Sample.new
mock(sample_obj).to_be_hit
sample_obj.do_other_thing

it was m"ypersonal tool

github.com/hasumikin/mrubyc-test

but already abandoned because

now it's dfficial b .

github.com/ /mrubyc-test

mr'ubyc-'test.gem '

2 adopted as the testing tool for mruby/c itself
9 so now you can safely send pull request to mruby/c

9 you can write mruby/c application with confidence

mrubyc-test.gem - internal

o the gist 1s creating by test code generator
implemented in CRuby

class SampleTest < MrubycTestCase
def some case
obj = Sample.new
assert equal obj.hoge, "fuga"
end

SampleTest#some case
assertion : assert equal
result : fuga

Finished

1 examples, 0 failures

lest.c

bytecode te St executable

class Sample
def hoge

llfugall
end

test code
generator

mrubyc-test.gem - how to make the test.rb

o gathers information of test cases by
#method_added

9 [learned this technique from Test::Unit

2 generates stub methods and mock methods

2 makes all-in-one script:

9 all the indispensable mechanism of assertion, stub,
mock, app code and test code get together

mrubyc-test.gem - Module#method_added

MrubycTestCase
(name)
%1 (method_missing setup teardown).include?(name)

location = caller_locations(1, 1)[0]
path = location.absolute_path || location.path
line = location.lineno

@@added_methods << {
method_name: name.to_s,
path: Fi1le.expand_path(path),

line: line

}

mr'ub'yc-'test.gem ‘

SampleTest < MrubycTestCase
desc "stub test sample”

sample_obj = Sample.new
stub(sample_obj).still_not_defined_method {
", 1t must be Ruby”

}

o test code inherits MrubycTestCase to be analyzed

mr'ub'yc-'test.gem -
BasicObject#method_missing

MrubycTestCase
(method_name, =%args)
method_name
:stub, :mock
location = caller_locations(1, 1)L0]
Mrubyc: :Test: :Generator: :Pouble.new(
method_name, args[0], location

)

mr'ub'yc-'test.gem - generated stub method

Sample

", 1t must be Ruby”

mr'ub'yc-'test.gem - template of stub

<% test_cases.each ltest_case! -7%>
<% test_casel:stubs].each 'stub! -%>
<%= stubl[:class_name] %>
attr_accessor <%= stub[:1nstance_variables] %>

<% stubl:return_value].is_a?(String) -%>
"<%= stub[:return_value] %>"

<% ~ 7>
<%= stubl[:return_value] %>

<% ~ %>

<% %>

rrgrry Yy
e & o
_ = 5

NENPRRP—

— e —— — = -

mruby/ ¢ firmware is made up of three parts

2]) peripheral API (C)
2 2) business logic (mmruby)
9 3)

6K

mruby/ Cfirmware is made up Of threepa'rts

infinite loop
foo = Foo.new
while true
1T foo.hoge ¥= 1
puts "SUCCESS!"

business logic

def hoge
fuga_val = fuga
c_hoge(fuga_val)

/* peripheral API wragpper x
ctatircr vnid ~ hnoe <\/m mrh_value xV, int argc) {

result = peripheral_api_call(GET TNT ARG/TY)Y-
SET_INT_RETURN (r& .I .
}

we have 'multiple infinite 100ps' }

o firmware programming 1s essentially thread
programming which consists of multiple infinite loops

2 they keep watch on status like user input, changing
sensor value and BLE/W1F1 message, then display
some 1nformation to indicate internal status

while true while true while true

watches UI 0 # changes display 0 # watches sensor

end end end

the loopSOf mruby/c are

9 user space threads managed by mruby/c's runtime

#tdefine MEMORY_SIZE (1024 x 40)
uint8_t mrubyc_vm_pool[MEMORY_SIZE];
() {

mrbc_init(mrubyc_vm_pool, MEMORY_SIZE);
mrbc_create_task(watch_user_interace, 0);
mrbc_create_task(change_display, 0);
mrbc_create_task(watch_sensor_value, 0);
mrbc_run();

threads of CRuby

2 correspond to native threads (with GVL)

threads = []

threads << Thread.new { watch_user_interface }
threads << Thread.new { change_display }
threads << Thread.new { watch_sensor_value }
threads.each(&:join)

(DEMO)

github.com/hasumikin/mrubyc-debugger

mrUbyc-debugg'er.gem

o mrubyc-debugger runs mruby/c loop script as a
CRuby thread

2 1t simultaneously shows which lines are being
executed

2 besides, 1t have to take over the debug print of the
script

2 1n order to do that, we can use your favorite CRuby
features like ...

TracePoint

mrub'yc-'d_ebugg'er; gem - TracePoint

tasks = Pir.glob(File.join(Pir.pwd, "mrubyc_loops_dir"”, "x.rb"))

TracePoint.new(:c_call, :call, :line) Ltp]
number =
caller_locations(1, 1).each lcaller_location]
tasks.each_with_index ' task, 1]
number = 1 caller_location.to_s.include?(File.basename(task))
nhumber
@e@mutex. lock
event = {
method_1id: tp.method_id,
lineno: tp.lineno,
caller_location: caller_location,
binding: tp.binding }

$event_queues[number].push event
@@mutex.unlock

Refinements

mr’ub'yc-'debugg'er; gem - Refinements

DebugQueue
refine Kernel
(text)
$debug_queues[Thread.current[:1ndex]] << {
level: :debug,
body: text }

2 assuming mruby/c loops use #puts for print

debug on serial console,

o mrubyc-debugger takes it over to print on Curses
window

mr'ub'yc-'d_ebugg'er‘. gem - Curses

include Curses
debug = $debug_queues[1].pop
wins[1][:out].addstr " #{debug[:levell} " + debugl[:body]

event = $event_queues[1].pop

(1..(wins[iJ[:src].maxy - 2)).each y |
wins[i]J[:src].setpos(y, 1)
l@srcs[1]ly._

wins[i][:src].addstr ' ' x wins[i][:src].maxx

wins[1][:src].attron(A_REVERSE) y == event[:lineno]

vars = {}
event[:tp_binding].local_variables.each lvar |

vars[var] = event[:tp_binding].local_variable_get(var).inspect

mrub'yc-debugg'er; gem - Binding

binding. local_variables

binding. local_variable_get(:var_a)

pbinding. local_variable_set(:var_a, "bar™)
binding. local_variable_get(:var_a)

summary

o2 mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem

summary

o mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem
even if Matz hates test

summary

o mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem
even if Matz hates test

o mrubyc-debugger is a visualization tool of

concurrent mruby/c loop tasks powered by CRuby's
Thread

summary

o mrubyc-test is the first testing tool for mruby/c. it
means mruby/c started to have its ecosystem
even if Matz hates test

o mrubyc-debugger is a visualization tool of
concurrent mruby/c loop tasks powered by CRuby's
Thread

no matter what Matz regrets

summary

2 at a glance, developing with mruby/c seems to be
very restricted due to lack of dynamic features

summary

2 at a glance, developing with mruby/c seems to be
very restricted due to lack of dynamic features

o2 however, it will be more etfective by using the
power of CRuby and our own tools

summary

2 at a glance, developing with mruby/c seems to be
very restricted due to lack of dynamic features

o2 however, it will be more etfective by using the
power of CRuby and our own tools

2 above all, Rubyish-terminal-based development is
fun!

o HASUMI Hitoshi

111

@hasumi

9 Monstar Lab

1NC.
ce

if1

Shimane o
o Sake (-

WY S
VR

¢ e
» .1».5#) :
MY & U

Soba &

B A A

{
S

|
h

-0
Q
A
.
O
O

Thank you!

