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Motivation () MicroPython

Generally, we keep minimal configuration of
MicroPython under 80K of ARM ThumbZ2 code
(which includes compiler and interactive
prompt, ...). That means a Cortex-M
microcontroller with 128KB of flash can host a
minimal version together with some hardware
drivers.

[cited from "https.//github.com/micropython/micropython/wiki/FAQ|



Motivation (&) MicroPython

Regarding RAM usage, (...) 8KB is minimal
amount to run simple scripts. As Python 1s
Iinterpreted high-level language, the more

memory you have, the more capable
applications you can run. The reference

MicroPython board, PyBoard, has 128KB of RAM.
[cited from “https.//github.com/micropython/micropython/wiki/FAQ']




Motivation (=) mruby and mruby/c
Flashing mruby application into 128KB ROM and
running it on 128KB RAM are ditficult

mruby/c runs on 64KB RAM but it doesn't have
mruby compiler

You have to compile Ruby script into VM code before
embedding



Motivation

MicroPython:
"Overwhelming, we are!
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Motivation &

Would 1t be great 1f we have a
smaller mruby compiler?



Target Microcontroller

PSoC5LP: Reference board of mruby/c
Arm Cortex-M3 32bit processor

64KB RAM
256KB ROM

[t will be comparable to MicroPython 1f Ruby runs
on PSoC5LP with compiler



Demo
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Terms

mruby
A Ruby implementation for general embedded purpose

mrbc
The original mruby compiler bundled with mruby

mruby/c

Another implementation of mruby VM for one-chip
microcontroller

[t doesn't have compiler



Terms

mmrbc (mini mruby compiler)
Another mruby compiler for one-chip microcontroller

mmruby (minil mruby) = mmrbc + mruby/c

mruby machine

A microcontroller embedded with integration of
mmruby, CUI shell and peripheral drivers



mruby machine

mmrbc
mruby/c VM
mruby/c tasks Peripheral drivers
Microcontroller (CPU, ROM, RAM)

Peripherals (GPIO, ADC, UART, etc.), Interrupter




Cross compilation tools for bare metal Arm

arm-none-eabl-gcc, arm-none-eabl-ar, arm-none-
eabi-ld, arm-none-eabi-strip, etc.

What 1s "arm-none-eabi-" ?
arm: Arm architecture

none: Without OS (Bare metal)
eabl: Embedded Application Binary Interface



Three tool-chains in my laptop (Intel 64)

1. (x86_64-linux-gnu-)gcc
Usual compilation 1n daily development

2. arm-linux-gnueabi-gcc
Binary runs on QEMU (machine emulator)

3. arm-none-eabi-gcc (--with-newlib)
To make a final library archive (libmmrbc.a) for
bare metal Arm



Docker 1image
(('tag:center’))

https:/hub.docker.com/r/
hasumikin/arm-none-eabi-tools



C Library

glibc (GNU C Library)

Newlib
Another C library especially for embedded system

Some implementation is missed. eq) regex.c

Newlib-nano
Even smaller version of Newlib for Arm processor

Yet other libraries
EGLIBC, Clibc, sqglibc, etc.






Repo

https:/github.com/hasumikin/mmruby



Features of mmrbc

Portable and Less dependent
Doesn't depend on mruby nor mruby/c

(To the contrary, mrbc depends on mruby itself)

Depends on only standard C library including Newlib(-
nano)

Can be 1ntegrated with both mruby and mruby/c



Features of mmrbc

Small (by linking to Newlib-nano)

Fits in less than 256KB ROM (including mruby/c VM
and some application code)

Runs enough on less than 128KB RAM



Features of mmrbc

Lemon as a parser generator instead of Yacc/Bison
Originally a parser generator of SQL1te



Yacc/Bison

LALR(1) parser generator, typical choice of parser
generator

Yacc (Barkley Yacc)
Non-reentrant

Parser-Calls-Lexer style (CRuby and mruby use it)

Bison (Gnu Bison. Modernized version of Yacc)
Reentrant, Thread-Safe and Lexer-Calls-Parser style

(You can also select old Yacc style)



Lemon

Reentrant
Lexer-Calls-Parser style



Parser-Calls-Lexer style (Yacc)

yyparse(p),

/* 1n y.tab.c (generated by Yacc) *x/
int yyparse(parser_state xp) {
yytoken = yylex(yylval, p);
/* makes AST according as you defined x/

goto yyhogefuga;
J

/x yylex() is called by parser x/

int yylex(void xlval, parser_state xp) {
# Find next token and return token type
return tokenType;

¥

GenerateVMCode (p->ast);




Lexer-Calls-Parser style (Lemon)

/* 1n your own Lexer %/

while (hasMoreToken(rubyScript)) {
token = getToken(rubyScript);
Parse(parser, tokenType, token);

)

Parse(parser, 0, "");

/% 1n parse.c (generated by Lemon) %/
void Parse(void xyyp, int yymajor, ...) {
/* makes AST according as you defined %/

} .

GenerateVMCode (p->ast);




Lemon

LALR(1) parser generator as well
Reentrant
Lexer-Calls-Parser style

Generated parser 1s, I'm still not sure though,
Faster than Yacc/Bison (according to its document)

Smaller code (according to someone)

Grammar syntax of parse.y 1s different from Yacc/-
Bison



Lemon

https://sqlite.org/src/doc/trunk/doc/lemon.html






RAM consumption

mruby's branch
‘mruby3” as of Auqgust 14th



RAM consumption

To make things simple, both mrbc and mmrbc are
built for x86_64 architecture

using malloc() and free() of glibc
(mmrbc usually uses mrbc_alloc() to manage heap area)

Linux file system to load Ruby script
(microcontroller doesn't have file system)

As a result, we can simply compare with valgrind



RAM consumption

Analysis command looks like:
valgrind \
--tool=massif \
--stacks=yes \

path/to/(mrbc|immrbc) path/to/script.rb

Showing the result:
ms_print massif.out.xxxx | less



RAM consumption: Case 1
Ruby code:

# hello_world.rb
puts "Hello World!”

Output:

Hello World!




RAM consumption: Case 1/ mrbc

Command: . ./mruby/build/host/bin/mrbc ./hello_world.rb

Massif arguments: --stacks=yes

ms_print arguments: massif.out.4087
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RAM consumption: Case 1/ mmrbc

Command: . ./mmruby/build/host-production/bin/mmrbc ./hello_world.rb
Massif arguments: --stacks=yes
ms_print arguments: massif.out.1652
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RAM consumption: Case 1/ mmrbc

Command: . ./mmruby/build/host-production/bin/mmrbc
Massif arguments: --stacks=yes
ms_print arguments: massif.out.1652
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RAM consumption: Case 2
Ruby code:

# 1diotic_script.rb

ary = Array.new(3)

ary[0] = {a: 123e2}

ary[0][:key] = "string”

ary[1] = %w(abc ABC Hello)

ary[2] = Ox1f

ary[ 3] | true

puts "my name is #{self.class}, result is #{ary[2] x ary[0][:al}"

p ary




RAM consumption: Case 2
Output:

my name 1s Object, result 1s 381300
[{:a=>12300, :key=>"string”}, ["abc", "ABC", "Hello”], 31, falsel]




RAM consumption: Case 2 / mrbc

Command: . ./mruby/build/host/bin/mrbc ./idiotic_script.rb
Massif arguments: --stacks=yes
ms_print arguments: massif.out.4133
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RAM consumption: Case 2 / mmrbc

Command: . ./mmruby/build/host-production/bin/mmrbc idiotic_script.rb
Massif arguments: --stacks=yes
ms_print arguments: massif.out.13414
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RAM consumption: Summary

__________ —
Ruby script | mrbc | mmrbc
__________ e S —
hello_world.rb | 157.8KB | 11.17KB
__________ 4
idiotic_script.rb | 162.9kB | 53.20KB
__________ N N R

Note: These results are larger than possible results on
32b1t architecture because of pointer size



Idiotic script

# 1diotic_script.rb
ary = Array.new(3)
ary[0] = {a: 123e2}
ary[0][:key] = "string”

ary[1] = %w(abc ABC Hello)

ary[2] = Ox1f

ary[3] = !true

puts "my name is #{self.class}, result is #{ary[2] * ary[0][:al}"
p ary

=>

my name 1s Object, result 1s 381300
[{:a=>12300, :key=>"string”}, ["abc”, "ABC", "Hello”], 31, false]

Syntax that mmrbc can compile



Syntax \'’4 implemented

Ivar, Sgvar, @ivar, CONSTANT

assignment, fcall, method chain

Literals: Array, Hash, String, Fixnum, Float, etc.
Keywords: true, false, nil, return, self, etc.

+; -l *l /l %l **; +=; -=l *=l /=; 0/0=; &=l =l A=I **=l <<=l >>=
!l NI +l -l nOtl &l ‘l AI <<l >>
Syntax sugar: %w(a b c)

Interpolation: "The answer is #{get_result(@attr)}!”



Syntax ¥ under construction

1f then elif else end, unless

case when else then

while, until, break, next, redo, retry, for 1n
10,1].each do |var| end

def method_name(arq); end

class MyClass < ParentClass; end

rescue, ensure

.., etc.



Roadmap

https://github.com/hasumikin/mmruby/issues/6



Code size (to estimate ROM consumption)

% ls -1

(...)

.rwxrwxrwx 609k hasumi 17
.rwxrwxrwx 903k hasumi 17
.rwxrwxrwx 650k hasumi 17
.rwxrwxrwx 425k hasumi 17

ug  7:03 mruby_machine_PSoC5LP.a
ug  7:03 mruby_machine_PSoC5LP.elf
ug  7:03 mruby_machine_PSoC5LP.hex

A
A
A
Aug 7:03 mruby_machine_PSoC5LP.map

% slze mruby_machine_PSoC5LP.elf
text data bss dec hex f1lename
136080 320 63009 199409  30af1 mruby_machine_PSoC5LP.elf




Code size (to estimate ROM consumption)

% ls -1

(...)

.Twxrwxrwx 609k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.a
Twxrwxrwx 903k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.elf
.Twxrwxrwx 650k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.hex
.Twxrwxrwx 425k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.map

% slze mruby_machine_PSoC5LP.elf
text data bss dec hex f1lename
136080 320 63009 199409  30af1 mruby_machine_PSoC5LP.elf

136_080 + 320 = 136_400 = 133.2KB



Summary

mmrbc 1s a minl mruby compiler
VM code runs on both mruby VM and mruby/c VM

Still iIncomplete regarding syntax and memeory
efficiency

mruby machine
= mmrbc + mruby/c + shell + dirivers

Runs on PSoC5LP { RAM: 64KB, ROM: 256KB }



Thank you!



