N NN N
o, foﬂhcriontier . .

hasumikin

-l H H B

HASUMI Hitoshi

. . - -Jter.rél-

HASUMI Hitoshi (P& 15)
@hasumikin (/NAIF:

From Ruby City Matsue,
a holy place of | (ZL#)

Developer on Rails

(L—=IVICEST-FFREE)

Coffee =
Curry <&
Soba (NoEmojiError)

MONST"&R GLOBAL v Services Projects Be Borderless About Contact

Products & Platforms Leadership CEO Column Careers Newsroom

With offices in 26 cities
around the world, we
Know your market

Motivation () MicroPython

Generally, we keep minimal configuration of
MicroPython under 80K of ARM ThumbZ2 code
(which includes compiler and interactive
prompt, ...). That means a Cortex-M
microcontroller with 128KB of flash can host a
minimal version together with some hardware
drivers.

[cited from "https.//github.com/micropython/micropython/wiki/FAQ|

Motivation (&) MicroPython

Regarding RAM usage, (...) 8KB is minimal
amount to run simple scripts. As Python 1s
Iinterpreted high-level language, the more

memory you have, the more capable
applications you can run. The reference

MicroPython board, PyBoard, has 128KB of RAM.
[cited from “https.//github.com/micropython/micropython/wiki/FAQ']

Motivation (=) mruby and mruby/c
Flashing mruby application into 128KB ROM and
running it on 128KB RAM are ditficult

mruby/c runs on 64KB RAM but it doesn't have
mruby compiler

You have to compile Ruby script into VM code before
embedding

Motivation

MicroPython:
"Overwhelming, we are!

[[ERIFGCDRWD D E]

Motivation &

Would 1t be great 1f we have a
smaller mruby compiler?

Target Microcontroller

PSoC5LP: Reference board of mruby/c
Arm Cortex-M3 32bit processor

64KB RAM
256KB ROM

[t will be comparable to MicroPython 1f Ruby runs
on PSoC5LP with compiler

Demo

w mlerms ininTﬁpli

Terms

mruby
A Ruby implementation for general embedded purpose

mrbc
The original mruby compiler bundled with mruby

mruby/c

Another implementation of mruby VM for one-chip
microcontroller

[t doesn't have compiler

Terms

mmrbc (mini mruby compiler)
Another mruby compiler for one-chip microcontroller

mmruby (minil mruby) = mmrbc + mruby/c

mruby machine

A microcontroller embedded with integration of
mmruby, CUI shell and peripheral drivers

mruby machine

mmrbc
mruby/c VM
mruby/c tasks Peripheral drivers
Microcontroller (CPU, ROM, RAM)

Peripherals (GPIO, ADC, UART, etc.), Interrupter

Cross compilation tools for bare metal Arm

arm-none-eabl-gcc, arm-none-eabl-ar, arm-none-
eabi-ld, arm-none-eabi-strip, etc.

What 1s "arm-none-eabi-" ?
arm: Arm architecture

none: Without OS (Bare metal)
eabl: Embedded Application Binary Interface

Three tool-chains in my laptop (Intel 64)

1. (x86_64-linux-gnu-)gcc
Usual compilation 1n daily development

2. arm-linux-gnueabi-gcc
Binary runs on QEMU (machine emulator)

3. arm-none-eabi-gcc (--with-newlib)
To make a final library archive (libmmrbc.a) for
bare metal Arm

Docker 1image
(('tag:center’))

https:/hub.docker.com/r/
hasumikin/arm-none-eabi-tools

C Library

glibc (GNU C Library)

Newlib
Another C library especially for embedded system

Some implementation is missed. eq) regex.c

Newlib-nano
Even smaller version of Newlib for Arm processor

Yet other libraries
EGLIBC, Clibc, sqglibc, etc.

Repo

https:/github.com/hasumikin/mmruby

Features of mmrbc

Portable and Less dependent
Doesn't depend on mruby nor mruby/c

(To the contrary, mrbc depends on mruby itself)

Depends on only standard C library including Newlib(-
nano)

Can be 1ntegrated with both mruby and mruby/c

Features of mmrbc

Small (by linking to Newlib-nano)

Fits in less than 256KB ROM (including mruby/c VM
and some application code)

Runs enough on less than 128KB RAM

Features of mmrbc

Lemon as a parser generator instead of Yacc/Bison
Originally a parser generator of SQL1te

Yacc/Bison

LALR(1) parser generator, typical choice of parser
generator

Yacc (Barkley Yacc)
Non-reentrant

Parser-Calls-Lexer style (CRuby and mruby use it)

Bison (Gnu Bison. Modernized version of Yacc)
Reentrant, Thread-Safe and Lexer-Calls-Parser style

(You can also select old Yacc style)

Lemon

Reentrant
Lexer-Calls-Parser style

Parser-Calls-Lexer style (Yacc)

yyparse(p),

/* 1n y.tab.c (generated by Yacc) *x/
int yyparse(parser_state xp) {
yytoken = yylex(yylval, p);
/* makes AST according as you defined x/

goto yyhogefuga;
J

/x yylex() is called by parser x/

int yylex(void xlval, parser_state xp) {
Find next token and return token type
return tokenType;

¥

GenerateVMCode (p->ast);

Lexer-Calls-Parser style (Lemon)

/* 1n your own Lexer %/

while (hasMoreToken(rubyScript)) {
token = getToken(rubyScript);
Parse(parser, tokenType, token);

)

Parse(parser, 0, "");

/% 1n parse.c (generated by Lemon) %/
void Parse(void xyyp, int yymajor, ...) {
/* makes AST according as you defined %/

} .

GenerateVMCode (p->ast);

Lemon

LALR(1) parser generator as well
Reentrant
Lexer-Calls-Parser style

Generated parser 1s, I'm still not sure though,
Faster than Yacc/Bison (according to its document)

Smaller code (according to someone)

Grammar syntax of parse.y 1s different from Yacc/-
Bison

Lemon

https://sqlite.org/src/doc/trunk/doc/lemon.html

RAM consumption

mruby's branch
‘mruby3” as of Auqgust 14th

RAM consumption

To make things simple, both mrbc and mmrbc are
built for x86_64 architecture

using malloc() and free() of glibc
(mmrbc usually uses mrbc_alloc() to manage heap area)

Linux file system to load Ruby script
(microcontroller doesn't have file system)

As a result, we can simply compare with valgrind

RAM consumption

Analysis command looks like:
valgrind \
--tool=massif \
--stacks=yes \

path/to/(mrbc|immrbc) path/to/script.rb

Showing the result:
ms_print massif.out.xxxx | less

RAM consumption: Case 1
Ruby code:

hello_world.rb
puts "Hello World!”

Output:

Hello World!

RAM consumption: Case 1/ mrbc

Command: . ./mruby/build/host/bin/mrbc ./hello_world.rb

Massif arguments: --stacks=yes

ms_print arguments: massif.out.4087

KB

157.8% #
: #
: #
: #
| #
: @#
: @#
: @#
: @@@#
: @@::::iiissii@iiiiiii@ @
: @ ::::::@ ¢ G 1.@ @Q#
: R B C I 1@ ;@ 1:@ @#
: A B C I e C I ;@ 1:@ @#
: Dol : @ @ e C I ;@ 1:@ @#
: : @ @ e C I ;@ 1:@ @#
| ;@ ::@: 1@ . @: A CINCE:
: N C R C c.@ . @: 1@ @#
: @ @ 1@ . @ 1.@ @Q#
: N C R C 1@ . @ D.@ @Q#
: N C R C 1@ . @: D.@ @Q#

O +- - ———— - >M1

0 3.235

RAM consumption: Case 1/ mmrbc

Command: . ./mmruby/build/host-production/bin/mmrbc ./hello_world.rb
Massif arguments: --stacks=yes
ms_print arguments: massif.out.1652
KB
11.174 #
! @#

O MO MO MMM O @ @ @ @ @ ©

O OO MMMMOMMMMMODMMOM O @ @
@O 0O 0O O O O @ @ @ @ @ (@

()

()

S

ONONONONONONONONONONONONONONONEY

RAM consumption: Case 1/ mmrbc

Command: . ./mmruby/build/host-production/bin/mmrbc
Massif arguments: --stacks=yes
ms_print arguments: massif.out.1652

KB
11.177

ONONONONONONONONONONONONONONONEY
O OO MMMMOMMMMMODMMOM O @ @

O MO MO MMM O @ @ @ @ @ ©

MMM MMMMMMMMMMMOM O @ O ©

78888

RAM consumption: Case 2
Ruby code:

1diotic_script.rb

ary = Array.new(3)

ary[0] = {a: 123e2}

ary[0][:key] = "string”

ary[1] = %w(abc ABC Hello)

ary[2] = Ox1f

ary[3] | true

puts "my name is #{self.class}, result is #{ary[2] x ary[0][:al}"

p ary

RAM consumption: Case 2
Output:

my name 1s Object, result 1s 381300
[{:a=>12300, :key=>"string”}, ["abc", "ABC", "Hello”], 31, falsel]

RAM consumption: Case 2 / mrbc

Command: . ./mruby/build/host/bin/mrbc ./idiotic_script.rb
Massif arguments: --stacks=yes
ms_print arguments: massif.out.4133

KB
162.94 e
| o

O MO MO O O O @ @ @ @ (@

O MO MO O O @ @ @
@ ©® O 0O @ ® © @ @ @

RAM consumption: Case 2 / mmrbc

Command: . ./mmruby/build/host-production/bin/mmrbc idiotic_script.rb
Massif arguments: --stacks=yes
ms_print arguments: massif.out.13414
KB
53.20% #
' #

()

ONONONONONONONONCY,

R CCICI

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I : sl
I @@: @@#::: :
: . o o o ° o o o
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(ONONONONONONC
@ @
@ ©
@ ® O 0O O @ @ ©
(ONONONONONONONEY
@ O® O 0O @ @ @ @ (O
O O 0O O @ @ @ (@
()
()
()
()
S5 S

RAM consumption: Summary

__________ —
Ruby script | mrbc | mmrbc
__________ e S —
hello_world.rb | 157.8KB | 11.17KB
__________ 4
idiotic_script.rb | 162.9kB | 53.20KB
__________ N N R

Note: These results are larger than possible results on
32b1t architecture because of pointer size

Idiotic script

1diotic_script.rb
ary = Array.new(3)
ary[0] = {a: 123e2}
ary[0][:key] = "string”

ary[1] = %w(abc ABC Hello)

ary[2] = Ox1f

ary[3] = !true

puts "my name is #{self.class}, result is #{ary[2] * ary[0][:al}"
p ary

=>

my name 1s Object, result 1s 381300
[{:a=>12300, :key=>"string”}, ["abc”, "ABC", "Hello”], 31, false]

Syntax that mmrbc can compile

Syntax \'’4 implemented

Ivar, Sgvar, @ivar, CONSTANT

assignment, fcall, method chain

Literals: Array, Hash, String, Fixnum, Float, etc.
Keywords: true, false, nil, return, self, etc.

+; -l *l /l %l **; +=; -=l *=l /=; 0/0=; &=l =l A=I **=l <<=l >>=
!l NI +l -l nOtl &l ‘l AI <<l >>
Syntax sugar: %w(a b c)

Interpolation: "The answer is #{get_result(@attr)}!”

Syntax ¥ under construction

1f then elif else end, unless

case when else then

while, until, break, next, redo, retry, for 1n
10,1].each do |var| end

def method_name(arq); end

class MyClass < ParentClass; end

rescue, ensure

.., etc.

Roadmap

https://github.com/hasumikin/mmruby/issues/6

Code size (to estimate ROM consumption)

% ls -1

(...)

.rwxrwxrwx 609k hasumi 17
.rwxrwxrwx 903k hasumi 17
.rwxrwxrwx 650k hasumi 17
.rwxrwxrwx 425k hasumi 17

ug 7:03 mruby_machine_PSoC5LP.a
ug 7:03 mruby_machine_PSoC5LP.elf
ug 7:03 mruby_machine_PSoC5LP.hex

A
A
A
Aug 7:03 mruby_machine_PSoC5LP.map

% slze mruby_machine_PSoC5LP.elf
text data bss dec hex f1lename
136080 320 63009 199409 30af1 mruby_machine_PSoC5LP.elf

Code size (to estimate ROM consumption)

% ls -1

(...)

.Twxrwxrwx 609k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.a
Twxrwxrwx 903k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.elf
.Twxrwxrwx 650k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.hex
.Twxrwxrwx 425k hasumi 17 Aug 7:03 mruby_machine_PSoC5LP.map

% slze mruby_machine_PSoC5LP.elf
text data bss dec hex f1lename
136080 320 63009 199409 30af1 mruby_machine_PSoC5LP.elf

136_080 + 320 = 136_400 = 133.2KB

Summary

mmrbc 1s a minl mruby compiler
VM code runs on both mruby VM and mruby/c VM

Still iIncomplete regarding syntax and memeory
efficiency

mruby machine
= mmrbc + mruby/c + shell + dirivers

Runs on PSoC5LP { RAM: 64KB, ROM: 256KB }

Thank you!

