
Making IoT device
with Ruby

HASUMI Hitoshi
Monstar Lab, Matsue office

Nov. 2, 2018 (day 2)
RubyWorld Conference 2018

Kunibiki Messe, Shimane

Information

Information
mrubycKaigi#1 on Oct. 31, 2018 (the day
before yesterday)

Information

Information
Polish Ruby users group sent me an
invitation

they want me to talk about mruby/c

I'm going to have several talks and
workshops in May 2019

Information
Polish Ruby users group sent me an
invitation

they want me to talk about mruby/c

I'm going to have several talks and
workshops in May 2019

RubyWorld!!!

Making IoT device with Ruby
PoC product for a Sake brewery, 旭日酒造

Making IoT device with Ruby
prototype for mass production

you can see the device at Monstar-lab's booth
downstairs today (Nov. 1-2)

Making IoT device with Ruby
what does `with Ruby` mean?

not only CRuby

not only mruby/c, too

Making IoT device with Ruby
what does `with Ruby` mean?

not only CRuby

not only mruby/c, too

but also RubyWorld

About me

About me

About me
Monstar Lab / Matsue office (now hiring!)

About me
HASUMI Hitoshi（羽角 均） @hasumikin

finished master's degree in architecture
department

majored in the history of Italian architecture

became a programmer at 35 years old

neither a computer specialist nor an
electricity expert

Technology stack of IoT

Technology stack of IoT (1/2)
TCP/IP

cloud service

RDB and KVS

server programming

mobile programming

security

test

Technology stack of IoT (2/2)
high school physics electricity and
transistor

microcontroller and peripherals like
UART, I2C, ADC, etc.

circuit and PCB artwork

soldering and wiring

3D CAD for housing

suppliers

firmware programming

Understanding the business
Sake brewing process and Sake itself

Sake itself

The most thing you should know is

The most thing you should know is

Ruby on Rails

Ruby on Rails
tells you what a good API is

tells you what a reinventing the wheel is

tells you what an ecosystem is

tells you what a web service is

Technology stack of IoT (1/2) again
✓TCP/IP

✓cloud service

✓RDB and KVS

✓server programming

✓mobile programming

✓security

✓test

Ruby on Rails
gives you time on digging into
technologies other than the server app

gives you wings

Technology stack of IoT (2/2) again
✓high school physics electricity and
transistor

✓microcontroller and peripheral
interfaces like UART, I2C, ADC, etc.

✓circuit and PCB artwork

✓soldering and wiring

✓3D CAD

✓suppliers

✓firmware programming

Microcontroller
I use microcontrollers instead of single
board computers like Raspberry Pi

Microcontroller, upside
starts immediately right after plugged in

end users, brewery workers in my case,
can use it simply

you can narrow security issue list
many a malware aims at linux or windows
platform as a target

you don't need to consider unnecessary
deamon

neither need to do `apt upgrade` nor `yum
update`

Microcontroller, upside
low energy

rarely overheated

many choices of power supply

mass production
you can choose appropriate chipset
(number of GPIOs, memory size, etc.) for
your application

cost advantage for parts supply and
subcontractor manufacturing

Microcontroller, downside
less resource

CPU, memory

hard to be soldered

Sake IoT project

Sake IoT project
IoT system for Asahi-shuzo（旭日酒造）

delivered to actual brew work in January
2018

devices post temperature of Sake
materials in brewing, surrounding
temperature and humidity to the cloud

then, those data are displayed on the
smartphone app

the firmware written in mruby/c

what does mruby/c mean?

what does mruby/c mean?
compact

concurrent

capability

Sake IoT project

So many factors to be troubled in IoT
circuit design, soldering, wiring,
peripheral equipments, network...

hard to find why the application doesn't
work well

in addition to above, I introduced a new
layer of mruby/c

one year ago, mruby/c was yet young,
had bugs and insufficiency

(now it is enough good)

So many factors to be troubled in IoT

then, was mruby/c bad?

So many factors to be troubled in IoT

then, was mruby/c bad? - NO

IoT at work makes you hurry, imagine
you have to go alternately to dark 10℃
storage cellar and humid 35℃
manufacturing room

brewery workers run around

you have to amend your firmware with
your small laptop in 10 minutes

you will thank Ruby's descriptiveness and
agility

Does IoT at work make you hurry?

Does IoT at work make you hurry?

Pre-prototyping
preparation is the most important thing

you have to confirm if a part works as
same as the datasheet

sometimes it is different

you can prepare with Ruby

Pre-prototyping

Raspberry Pi & CRuby are great for pre-
prototyping

use breadboard or make PCB for test like this
photo

Pre-prototyping
ex) CRuby for serial communication test

notice this is CRuby for RasPi
require 'rubyserial'
require 'timeout'
sp = Serial.new '/dev/serial0', BAUDRATE, 8 # match with your instrument
loop do
 puts '[command]'
 command = gets
 sp.write command.sub("\n", "\r") # replace LF if needed
 sleep 0.1
 result = ''
 begin
 Timeout.timeout(10) do
 loop do
 line = sp.read(128)
 break if line == '' && result != ''
 result << line
 sleep 0.1
 puts '=> ' + result
 rescue Timeout::Error
 puts 'timeout!'
ennnnd

Pre-prototyping
ex) CRuby for serial communication test

$ serial_communication_test.rb
[command]
AT # command
=> OK # response
[command]
AT+CIMI # command
=> 123456789012 # response
[command]
AT+XXX # command
=> error # response

Pre-prototyping
then, you can copy and paste CRuby
snippet to mruby/c source

Firmware programming with mruby/c

Firmware programming with mruby/c
Ruby power

string operations

encapsulation (object oriented)

Firmware programming with mruby/c

ex) string operations
#
concatenation
parameter = 'name=' + name + '&age=' + age.to_s
=> name=hasumikin&age=43

substitution
'what_a_wonderful_world'.tr('_', '-')
=> what-a-wonderful-world

Firmware programming with mruby/c

ex) encapsulation (object oriented)
class LoggerBase
 def info(line)
 write(:info, line)
ennd
class LoggerBLE < LoggerBase
 def initialize(*args)
 @ble = BluetoothLowEnergy.bind_characteristic(args[0])
 end
 def write(log_level, line)
 @ble.notify(line)
ennd
class LoggerFlashROM < LoggerBase
 def initialize(*args)
 @rom_io = RomFileStream.open('/log.txt', 'w')
 end
 def write(log_level, line)
 @rom_io.write_ln(line)
ennd
logger = LoggerBLE.new(:log) /* or */ logger = LoggerFlashROM.new
logger.info('this is log')

Firmware programming with mruby/c
you must write both mruby and C

C for microcontroller I/O

mruby for business logic

mruby/c seems like a thin wrapper for C
two sides of the same coin:

you have to write C that directly communicate
with peripherals

you can fall back to C anytime you get stuck

Find more information on
rubykaigi.org/2018/presentations/
hasumon.html

shimane.monstar-lab.com/hasumin

follow twitter.com/mrubyc_jp
ITOC and I are planning to make
workshops of mruby/c

Conclusion

Conclusion
Thank Ruby

from pre-prototyping to production

Conclusion
Thank Ruby

from pre-prototyping to production

Thank Rails
full of really important things

Conclusion
Thank Ruby

from pre-prototyping to production

Thank Rails
full of really important things

Thank Sake

Thank you all!

