
Firmware Programming
with mruby/c

HASUMI Hitoshi
Monstar Lab, Matsue office

2018/6/1
RubyKaigi2018@Sendai International Center

before starting,
assumed audience

people who want to make IoT with
Ruby

people who have never touched
mruby/c

people who did only tutorials of
mruby/c

people who love Sake

what this talk doesn't mention
microcontroller itself and
peripheral concepts like GPIO,

recommended book about
microcontroller

recommended tutorial

http://www.s-itoc.jp/activity/research/
mrubyc/mrubyc_tutorial/

agenda
terminology

about my IoT project

mruby and mruby/c

how does mruby/c work

debugging

actual source code of my project

development environment

terminology

terminology
mruby/c

I say エムルビーシー[emurubi:ʃí:] in
this talk

microcontroller = マイコン[maikon]
small computer contains CPU,
memory and programmable I/O
peripherals

in this talk, microcontroller is
distinguished from single board
computer like Raspberry Pi.
RasPi is rich, microcontroller is poor

terminology
RTOS

Real-time OS. usually used for
microcontroller. but we won't use it

task
almost equivalent to `thread` in
linux. we say `task` in
microcontroller world

terminology
旭日酒造(asahi-shuzo)

one of the best Japanese Sake
brewery

I also call the brewery asahi-san

asahi-san and I make IoT system
using mruby/c

terminology (IMO)
旭酒造(asahi-shuzo), yamaguchi: 獺祭
(dassai). fruity, aromatic and sweet

朝日酒造(asahi-shuzo), niigata: 久保田
(kubota). clear, dry and sharp

朝日酒造(asahi-shuzo), fukui: I don't
know at all...

旭日酒造(asahi-shuzo), shimane: 十旭
日(juji-asahi). tasteful, mature with
years and good for お燗(warmed style)

why microcontroller?
(rather than single board computer)

why microcontroller?
it starts immediately right after
plugged in

end users, brewery workers in my
case, can use simply

you can narrow security issue list
many a malware aims at linux or
windows platform as a target

you don't need to consider
unnecessary deamon

you don't need to do `apt upgrade`

why microcontroller?
low energy

rarely overheated

many choices of power supply

mass production
you can choose appropriate chipset
(number of GPIOs, memory size,
etc.) for your application

cost advantage for parts supply and
subcontractor manufacturing

which microcontroller?

which microcontroller?

CYPRESS PSoC5LP
32-bit Arm Cortex-M3 CPU

Flash/SRAM: 256KB/64KB

package: 68-pin QFN, 99-pin WLCSP,
100-pin TQFP

which microcontroller?

PSoC5LP Prototyping Kit
for prototyping and small production

you can purchase with 秋月電子通商
(akizukidenshi.com)

mruby/c works on only PSoC5LP?

mruby/c works on only PSoC5LP?
yes and no

the number of microcontroller on
which mruby/c runs is increasing

PSoC5LP is the most recommended
one. because it has a good example,
my project

PSoC5LP is very resonable to develop
IoT product especially for mass
production

IMO, the mruby/c core team made
the right choice

about my IoT project

about my IoT project
IoT system for asahi-san

delivered to actual brew work in
January 2018

devices post temperature of Sake
materials in brewing, surrounding
temperature and humidity to server

data is displayed on smartphone app

about my IoT project

about my IoT project
what were difficult about mruby/c?

we can neither do step execution nor
look into appropriate memory
address of mruby/c's variables

so many factors to be trouble in IoT
hard to find why the application
doesn't work well

mruby/c is growing
bugs, lack of docs and examples

about my IoT project
so, is mruby/c bad?

about my IoT project
so, is mruby/c bad? - NO

IoT at work makes you hurry
you have to go alternately to dark
10℃ storage cellar and humid 35℃
manufacturing room

brewery workers run around

you have to amend your firmware
with your small laptop in 10 minutes

you will thank Ruby's
descriptiveness and agility

today's demo
CO

2
 concentration

400ppm : atmospheric

1000ppm : your programming
speed decreases

1500ppm : tomatoes🍅 may grow
well

> 2000ppm : sleepy, headache

> 40000ppm : 💀

HD = humidity deficit = 飽差
3~6g : tomatoes🍅 grow well

today's demo

today's demo
prev page's graph shows CO2 of
room I stayed last night

CO2 concentration went up though 24
hour ventilation is mandatory

it is terrible that CO2 reached
2000ppm when I should have wake
up, isn't it?!

the device will measure while I talk
today. so I prove that it is due to CO2
if someone slept while I speaking

so many factors to be trouble in IoT

so many factors to be trouble in IoT
peripheral equipments (☆)

circuit and wiring design

printed circuit board = PCB

soldering (☆)

C, mruby and mruby/c (☆)

communication timing control (☆)

network

☆...I will explain these topics

peripheral equipments

peripheral equipments
it is very important to check these
things before writing application code

equipment like sensor or
communication module works as its
spec sheet

whether the equipment is not
broken (sometimes broken by
soldering 😭)

unless you will regret
so...

peripheral equipments

Raspberry Pi & CRuby are great for pre-
prototyping

use breadboard or make PCB for test
like this photo

peripheral equipments
ex) CRuby for serial communication test

notice this is CRuby for RasPi
require 'rubyserial'
require 'timeout'
BAUDRATE = 9600 # match with your instrument
sp = Serial.new '/dev/serial0', BAUDRATE, 8
loop do
 puts '[command]'
 command = gets
 sp.write command.sub("\n", "\r") # replace LF if needed
 sleep 0.1
 result = ''
 begin
 Timeout.timeout(10) do
 loop do
 line = sp.read(128)
 break if line == '' && result != ''
 result << line
 sleep 0.1
 puts '=> ' + result
 rescue Timeout::Error
 puts 'timeout!'
ennnnd

peripheral equipments
ex) CRuby for serial communication test

$ serial_communication_test.rb
[command]
AT # command
=> OK # response
[command]
AT+CIMI # command
=> 123456789012 # response
[command]
AT+XXX # command
=> error # response

soldering

soldering

it may work even if you leave a pin
unsoldered on surface mounting

because the pin touches circuit

then, it will not work one day

soldering

all the cause of failure, it is impatience
すべての失敗の原因、それは焦り

soldering

mruby and mruby/c

mruby and mruby/c
mruby

an ecosystem of interpreter, compiler
(mrbc), shell(mirb) and virtual
machine and mrbgems

mruby/c

VM(smaller than mruby), rrt0 and hal
(hardware abstraction layer)

mruby and mruby/c

mruby and mruby/c
mruby mruby/c

v1.0.0 in Jan 2014 v1.0 in Jan 2017
mrbgems no package

manager
RAM < N*100KB RAM < 64KB

coming up features to mruby/c
task priority

at this point, tasks run as simple
round robbin schedule, although we
can use Mutex

instance variable
at this point, you can use constants
and globals

in fact, you can use these features above.
just not announced

coming up features to mruby/c
compile option of including <math.h>

to reduce memory usage

Array#each and Hash#each
and Hash#to_json will come

note that now you can compile
`#each` with mrbc but it will not run
on mruby/c's VM

in short, mruby/c VM has less
methods than mruby VM

how does mruby/c work

how does mruby/c work

~/sample_project
├── main.c
├── mrblib
│ ├── job_1.rb
│ └── job_2.rb
└── src
 ├── job_1.c
 └── job_2.c

job_*.c are compliled code from
job_*.rb

how does mruby/c work

how does mruby/c work

/* main.c */
#include "src/job_1.c"
#include "src/job_2.c"
// use 30KB RAM for VMs in this case
#define MEMORY_SIZE (1024*30)
static uint8_t memory_pool[MEMORY_SIZE];
int main(void) {
 mrbc_init(memory_pool, MEMORY_SIZE);
 mrbc_create_task(job_1, 0);
 mrbc_create_task(job_2, 0);
 mrbc_run(); // 2 tasks run concurrently!
 return 0;
 // we will not write `main loop` in main.c
}

how does mruby/c work
we can run easily multiple VMs with
concurrency due to rrt0

you might be disappointed to know
you have to write C

yes, we have to write main.c

don't worry, it's almost boilerplate
code

how does mruby/c work

~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h

how does mruby/c work

~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h # hal for posix
├── hal_psoc5lp
│ └── hal.h # hal for PSoC5LP
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h

how does mruby/c work

~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h # runtime scheduler
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h

how does mruby/c work

~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h # this gives you hints about variable
├── vm.h
└── vm_config.h

how does mruby/c work

~/mrubyc $ tree src -P *.h
src
├── alloc.h
├── c_array.h
...
├── console.h
├── errorcode.h
├── global.h
├── hal_posix
│ └── hal.h
├── hal_psoc5lp
│ └── hal.h
├── load.h
├── mrubyc.h
├── opcode.h
├── rrt0.h
├── static.h
├── symbol.h
├── value.h
├── vm.h
└── vm_config.h # edit this if needed

debugging
we can neither do step execution nor
look into memory to see mruby/c
variables

before writing app code, we should
prepare way of debug

let's go with old-fashioned 'print
debug'. it'll be almost enough

debugging

/* add this snippet into main.c */
// create serial console with UART for debug print
// http://www.s-itoc.jp/activity/research/mrubyc/mrubyc_tutorial/737
static void c_debugprint(mrb_vm *vm, mrb_value *v, int argc){
 int total, used, free, fragment;
 mrbc_alloc_statistics(&total, &used, &free, &fragment);
 console_printf(
 "Memory total:%d, used:%d, free:%d, fragment:%d\n",
 total, used, free, fragment);
 unsigned char *key = GET_STRING_ARG(1);
 unsigned char *value = GET_STRING_ARG(2);
 console_printf("%s:%s\n", key, value);
}
int hal_write(int fd, const void *buf, int nbytes){
 UART_DEBUG_PutArray(buf, nbytes);
 return nbytes;
}
int hal_flush(int fd){
 return 0;
}
int main(void) {
 mrbc_define_method(0, mrbc_class_object, "debugprint", c_debugprint);
}

debugging

mruby
pi = 3.14
debugprint('Pi', pi)

=> # print in serial console like 'PuTTY' connecting USB
 Memory total:30000, used:20000, free:10000, fragment:3
 Pi:3.14

actual source code
http://github.com/
hasumikin/rubykaigi2018_demo.cydsn

actual source code

~/rubykaigi2018_demo.cydsn
├── main.c
├── mrblib
│ ├── job_3gmodule.rb # transmit JSON data to cloud
│ ├── job_breath.rb # hit 3gmodule periodically to send data
│ ├── job_co2.rb # measure CO2 concentration
│ ├── job_heartbeat.rb # show values on LED
│ └── job_humidity_deficit.rb # measure humidity deficit(HD)
└── src
 ├── job_3gmodule.c
 ├── job_breath.c
 ├── job_co2.c
 ├── job_heartbeat.c
 └── job_humidity_deficit.c

actual source code

job_heartbeat.rb
$mutex = Mutex.new # rrt0 has Mutex functionality
while true # this is a `main loop`
 r_LED_Driver_ClearDisplayAll # wrapper method of C func
 $co2 = measure_co2 # defined in job_co2.rb
 $hd = measure_humidity_deficit # job_humidity_deficit.rb
 $mutex.lock() # to prevent other jobs from overwriting LED
 r_LED_Driver_WriteString7Seg(sprintf('%4d', $co2), 0)
 r_LED_Driver_WriteString7Seg(sprintf('%3.0f', $hd * 10), 4)
 r_LED_Driver_PutDecimalPoint(1, 5)
 r_LED_Driver_WriteString7Seg('g', 7)
 $mutex.unlock()
 sleep 3
end

how does
r_LED_Driver_WriteString7Seg() work?

actual source code

/* add into main.c */
#include "src/job_heartbeat.c"
static void c_LED_Driver_WriteString7Seg(
 mrb_vm *vm, mrb_value *v, int argc){
 char *string = GET_STRING_ARG(1); // see value.h
 int position = GET_INT_ARG(2);
 // this is defined in IDE's framework
 LED_Driver_WriteString7Seg(string, position);
}
int main(void){
 ...
 mrbc_define_method(0, mrbc_class_object,
 "r_LED_Driver_WriteString7Seg",
 c_LED_Driver_WriteString7Seg);
 ...
}

actual source code

job_breath.rb
$state = 'initializing'
while !$mutex # wait until main loop runs
 relinquish()
end
sleep 10 # wait for 3G module starts
$state = 'waiting' if check_3gmodule
while true
 if $state != 'sending'
 $state = 'ready_to_send'
 end
 sleep 300 # send data every 5 mins
end

actual source code
job_3gmodule.rb(excerpt)
while true
 if $state == 'ready_to_send'
 $state = 'sending'
 i = 0
 while true
 flag = send_data(json($co2, $humidity_deficit))
 if flag
 $mutex.lock()
 r_LED_Driver_WriteString7Seg('sendgood', 0)
 sleep 1
 $mutex.unlock()
 break
 else
 $mutex.lock()
 r_LED_Driver_WriteString7Seg('sendfail', 0)
 sleep 1
 r_LED_Driver_WriteString7Seg('retry', 0)
 sleep 1
 $mutex.unlock()
 end
 if i > 2
 j = 0
 $mutex.lock()
 while j < 20
 j += 1
 r_LED_Driver_WriteString7Seg('fatalerr', 0)
 sleep 0.2
 r_LED_Driver_ClearDisplayAll
 sleep 0.05
 break
 end
 $mutex.unlock()
 end
 i += 1
 end
 debugprint('memory', 'check')
 $state = 'waiting'
ennd

actual source code

job_co2.rb does not have loop
def measure_co2
 r_UART_CO2_ClearTxBuffer
 r_UART_CO2_ClearRxBuffer
 ary = [0xff,0x01,0x86,0x00,0x00,0x00,0x00,0x00,0x79]
 r_UART_CO2_PutArray(ary, ary.size) # this will be explained
 res = []
 i = 0
 # can't write `for i in 0..3`, equiv. of #each
 while i < 4
 res[i] = r_UART_CO2_GetByte
 i += 1
 end
 if res[0] == 255 && res[1] == 134
 return res[2] * 256 + res[3]
 else
 return false
ennd

actual source code

/* add into main.c */
// mruby array should be converted into C array
static void c_UART_CO2_PutArray(
 mrb_vm *vm, mrb_value *v, int argc){
 mrb_value mrbc_array = GET_ARY_ARG(1);
 uint8 array[GET_INT_ARG(2)];
 for(int i = 0; i < GET_INT_ARG(2); i++) {
 mrb_value value = mrbc_array_get(&mrbc_array, i);
 array[i] = value.i;
 }
 UART_CO2_PutArray(array, GET_INT_ARG(2));

 uint8 tmpStat;
 do { // will be explained later
 tmpStat = UART_CO2_ReadTxStatus();
 } while (~tmpStat & UART_CO2_TX_STS_COMPLETE);
}

actual source code
you can pass string instead of mruby/
c array

it was a sample to handle mrb_value
I also wanted argument class(Array)
to correspond with method name
(xxx_PutArray)

use string instead of array if memory
becomes short

actual source code

/* add into main.c */
// mruby array should be converted into C array
static void c_UART_CO2_PutArray(
 mrb_vm *vm, mrb_value *v, int argc){
 mrb_value mrbc_array = GET_ARY_ARG(1);
 uint8 array[GET_INT_ARG(2)];
 for(int i = 0; i < GET_INT_ARG(2); i++) {
 mrb_value value = mrbc_array_get(&mrbc_array, i);
 array[i] = value.i;
 }
 UART_CO2_PutArray(array, GET_INT_ARG(2));

 uint8 tmpStat;
 do { // communication timing control here
 tmpStat = UART_CO2_ReadTxStatus();
 } while (~tmpStat & UART_CO2_TX_STS_COMPLETE);
}

actual source code
communication of microcontroller
takes time

we will not get notification something
like callback from peripheral

we have to wait until it's ready

we can write another wrapper for
waiting

but we want to reduce memory usage

development environment

development environment
IDE `PSoC Creator`

you need to use it for periferal
arrangement and pin assignment

development environment
IDE `PSoC Creator`

you need to use it for periferal
arrangement and pin assignment

runs only on Windows

development environment

development environment
do you hate IDE?

development environment
do you hate IDE?

#MeeToo

development environment
do you hate IDE?

#MeeToo

I made a tool for Linux and macOS
github.com/hasumikin/mrubyc-
utils

development environment

your_project $ mrubyc-utils --help
Usage: mrubyc-utils COMMAND [ARGS]

 install Install mruby/c repo into your local and setup templates.
 Please run this command at the top directory
 of your project (normally it should have 'main.c').
 update Update mruby/c repo to the newest master branch.
 checkout Checkout specified tag or commit of mruby/c repo.
 -t | --tag [required] You can specify anything that
 `git checkout` will accept.
 tag Show all tags of mruby/c repogitory that you installed.
 classes Show all the classes that are defined in
 mruby/c's virtual machine.
 methods Show all the methods that are available
 in specified class of mruby/c.
 -c | --class [required] You have to specify class name
 compile Compile your mruby source into C byte code.
 -w | --watch [optional] Monitoring loop runs and it will
 compile mruby source every time you save.

development environment

your_project $ mrubyc-utils install
(...install mruby/c and template files)
your_project $ mrubyc-utils compile
(...you can specify --watch option)
your_project $ tree
├── .gitignore
├── .mrubyc/
├── .mrubycconfig
├── main.c
├── mrblib
│ ├── job_main_loop.rb
│ ├── job_operations.rb
│ └── job_sub_loop.rb
├── mrubyc_src
(...)
│ └── vm_config.h
└── src
 ├── job_main_loop.c
 ├── job_operations.c
 └── job_sub_loop.c

development environment

your_project $ mrubyc-utils classes
- Array
- False
- Fixnum
- Float
- Hash
- Mutex
- Nil
- Object
- Proc
- Range
- String
- Symbol
- True

development environment
your_project $ mrubyc-utils methods --class=array
Array
- +
- <<
- []
- []=
- at
- clear
- count
- delete_at
- dup
- empty?
- first
- index
- last
- length
- pop
- push
- shift
- size
- unshift
 < Object
 - !
 - !=
 - <=>
 - attr_accessor
 - attr_reader
 - change_priority
 - class
 - get_tcb
 - instance_methods
 - new
 - p
 - puts
 - relinquish
 - resume_task
 - sleep
 - sleep_ms
 - sprintf
 - suspend_task

development environment
using mrubyc-utils, you can minimize
uses of IDE to these:

build setting

peripheral arrangement and pin
assignment

build

then you can write app code with vim,
emacs or textbringer

what you can do for mruby/c

what you can do for mruby/c
write another hal

so that mruby/c can be suitable for
more microcontrollers

write documentation, test and real
applications

publish that you use mruby/c

posix...

demo (this was added after Kaigi)

demo (this was added after Kaigi)
CO2 kept around 700ppm while I was
talking!

ventilating facilities of Sendai
International Center are so goooood!

about me

HASUMI Hitoshi （羽角 均）

Monstar Lab （モンスター・ラボ）
Matsue office （島根開発拠点）

conclusion

conclusion
you should refresh air

換気大事

thank you!

