
An experiment about
personalized front-end of

bugs.debian.org

An experiment about
personalized front-end of

bugs.debian.org
E-mail archives + UDD + Simple web front-end =

Kentaro Hayashi
ClearCode Inc.

DebConf20 online August 25, 2020

NOTE: Presentation slide is
published

This presentation slide is available via Rabbit Slide Show

https://slide.rabbit-shocker.org/authors/kenhys/debconf2020-online/
“An experiment about personalized front-end of bugs.debian.org”

https://slide.rabbit-shocker.org/authors/kenhys/debconf2020-online/

Personal profile

Debian Maintainer (@kenhys)

Trackpoint(soft dome) and Wasa beef(Yamayoshi Wasabi Potato Chips) fan

Working for ClearCode Inc.

ClearCode Inc.

https://www.clear-code.com/

Free software is important in ClearCode Inc.

We develop/support software with our free software development experiences

We feedback our business experiences to free software

https://www.clear-code.com/

Not talk about

Improving bugs.debian.org (debbugs) itself

Explaining bugs.debian.org (debbugs) internal in details

Agenda

Why so curious about bugs.d.o?

The troublesome cases about bugs.d.o

How to solve this situation?

Demonstrate a front-end

Conclusion

We use bugs.d.o

Usage of bugs.debian.org -
prerequisite

Communicate each other by E-mail

Change the bug status by sending E-mail

Send E-mail to control@bugs.d.o

Use control command in E-mail reply

Why so curious about bugs.d.o?

I’ve received deprecated notification bugs

Bug# 956770 growl-for-linux: Depends on deprecated libappindicator

Bug# 955899 growl-for-linux: Depends on deprecated dbus-glib

How did you fixed?

Bug# 956770 growl-for-linux: Depends on deprecated libappindicator

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=956770

Migrated to libayatana-indicator

It is easy because there are enough compatibility

I’ve fixed pkg-config target and include path

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=956770

How did you fixed? (again)

Bug# 955899 growl-for-linux: Depends on deprecated dbus-glib

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=955899

Migrated to GDBus

Use d-feet to detect interface change (Rhythmbox plugin)

Fixed a interface to follow GDBus API

Send PR to upstream https://github.com/mattn/growl-for-linux/

Fixed a potential Rhythmbox related bug, too

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=955899
https://github.com/mattn/growl-for-linux/

growl-for-linux was fixed

But…What about other packages?

What about other packages?

libappindicator: deprecated in Debian; AppIndicator based applications,
please switch to Ayatana (App)Indicator(s)

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=895037

libdbus-glib-1-dev: is deprecated

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=895291

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=895037
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=895291

libappindicator: deprecated in
Debian

Many blocked bugs

libdbus-glib-1-dev: is deprecated
in Debian

Too many blocked bugs (Need to scroll!)

How to track many blocked?

In this case, UserTags is recommended

https://wiki.debian.org/bugs.debian.org/usertags

https://udd.debian.org/cgi-bin/bts-usertags.cgi

https://wiki.debian.org/bugs.debian.org/usertags
https://udd.debian.org/cgi-bin/bts-usertags.cgi

Does it work with libappindicator?

UserTag is: ayatana-appindicator

Does it work with libdbus-glib1-
dev?

It is a case that UserTag is not available

It should be tagged…

The troublesome cases about
bugs.d.o

UserTag is not always used

It may be difficult to see many blocked bugs

How to solve this situation?

Use udd.debian.org!

UDD can track usertags

UDD can track blocking bugs

In my experience through
contribution, I need

I need easy to:

Track a specified bug (tagged/not tagged)

Find a bug that no one working on

Send control E-mail

Find affected bugs

In my experience through
contribution (again)

I need easy to:

Track a specified bug (tagged/not tagged) Use UDD!

Find a bug that no one working on

Send control E-mail

Find affected bugs

How to solve rest issues?

Find a bug that no one working on

It’s a good attitude to fix a bug

Send control E-mail easily

It’s a good attitude to triage a bug

Find affected bugs

Remember misery bugs #932855, #965164

Supplementary explanation: Find
affected bugs

Sometimes grave/critical bug was found

2019, critical, e2fsprogs 1.45.3-1 breaks initramfs-tools-core <=0.133

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=932855

2020, grave, policykit-1: fails to install

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=965164

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=932855
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=965164

What about existing solution?

https://wiki.debian.org/Services

Developer Horizon - A dashboard for developers

http://horizon.debian.net/ Not available

https://wiki.debian.org/Services
http://horizon.debian.net/

What about existing solution?

Fabre - fulltext search service

http://fabre.debian.net Around 2005, Discontinued

Undocumented Debian “debbugs internal” written in Japanese

https://tokyodebian-team.pages.debian.net/pdf2005/-
debianmeetingresume2005-fuyu.pdf

http://fabre.debian.net
https://tokyodebian-team.pages.debian.net/pdf2005/debianmeetingresume2005-fuyu.pdf

What about existing solution?

Debbugs Enhancement Suite

https://salsa.debian.org/lamby/debbugs-enhancement-suite

A Chrome extension to enhance using Debbugs

Tidy up each bug rendering, it’s cool (Thanks @lolamby FYI:)

…But It is a bit different what I want

https://salsa.debian.org/lamby/debbugs-enhancement-suite

What about existing solution?

Debian Popularity Contest

http://popcon.debian.org/

It provides a method to collect installed packages information

Public UDD Mirror

https://udd-mirror.debian.net/

It provides a statistical information about packages

http://popcon.debian.org/
https://udd-mirror.debian.net/

Starting personal project

Concept

Make “unstable life” comfortable

Fix a bug (by finding a bug that no one working on)

Triage a bug (by sending control E-mail easily)

Avoid affected bugs (by finding affected important bugs)

Starting personal project (again)

Concept

Make “unstable life” comfortable

Fix a bug (by finding a bug that no one working on) Count comment in
bug#NNNNNN

Triage a bug (by sending control E-mail easily) Add mailto: link explicitly

Avoid affected bugs (by finding affected important bugs) Alert recent grave
bugs

How to realize concept?

Collect bug information regularly (E-mail archives)

Collect Popcon data (Fix a bug with your familiar packages)

Collect your installed packages information (popularity-contest)

Process collected data and make it accessible!

Collect bug information

Get E-mail archive with rsync

https://salsa.debian.org/debbugs-team/debbugs

rsync -av rsync://bugs-mirror.debian.org/bts-spool-db/
It requires 15GiB!

Use *.log and *.summary

https://salsa.debian.org/debbugs-team/debbugs

Extract .log and .summary

Use perl module which is used for bugs.d.o (Debbugs)

Debbugs::Log, Debbugs::Status, Debbugs::MIME and so on

*.log contains multiple raw E-mail content with control sequence

*.summary contains metadata of each bug

How to parse .log

my $log = Debbugs::Log->new(log_name => $path);
my @records = $log->read_all_records();
for my $record (@records) {
 ...
 my $entity = Debbugs::MIME::parse_to_mime_entity($record);
 print "From: " . $entity->head->get("From");
 print "To: " . $entity->head->get("To");
 print "Subject: " . get_field($entity, "Subject");
 print "Date: " . $entity->head->get("Date");
}

How to parse .summary

Format-Version: 3
Submitter: Nis Martensen <nis.martensen@web.de>
Subject: libexo-helpers: starting thunderbird fails for some mailto URIs
Found-In: exo/0.12.4-1
Tags: patch
Package: libexo-helpers
Message-Id: <159439678897.3833.10774950364480956704.reportbug@siamos.nes.net>
Severity: normal
Date: 1594396982

my $summary = Debbugs::Status::read_bug(summary => $path);
print $summary->{"tags"}

Collect Popcon data and so on

UDD: UltimateDebianDatabase

https://wiki.debian.org/UltimateDebianDatabase

You can access with:
psql –host=udd-mirror.debian.net –user=udd-mirror udd –password

Schema is available: https://udd.debian.org/schema/udd.html

Import popcon and package data

https://wiki.debian.org/UltimateDebianDatabase
https://udd.debian.org/schema/udd.html

Collect installed packages
information

POPULARITY-CONTEST-0 TIME:1596711793 ID:XXX ARCH:amd64 POPCONVER:1.70 VENDOR:Debian
1596672000 1570622400 libgail-common /usr/lib/x86_64-linux-gnu/gtk-2.0/modules/libgail.so
1596672000 1596585600 libavcodec58 /usr/lib/x86_64-linux-gnu/libavcodec.so.58.91.100 <RECENT-CTIME>
1596672000 1586736000 libgoa-1.0-0b /usr/lib/x86_64-linux-gnu/libgoa-1.0.so.0.0.0
...
1596672000 1586217600 libzvbi0 /usr/lib/x86_64-linux-gnu/libzvbi.so.0.13.2
1596672000 1590624000 udisks2 /usr/share/locale/ja/LC_MESSAGES/udisks2.mo
END-POPULARITY-CONTEST-0 TIME:1596711817

Just upload popcon file

/usr/sbin/popularity-contest –su-nobody

Process collected data and make
it accessible!

Polling subscribed debian-bugs-dist@lists.debian.org

Importing latest E-mail archives from bugs-mirror.debian.org

Merging metadata + Web front-end

Prepared server specs for
experiment

Start with small VPS instance (about 3.26 USD/mo)

1vCPU

1GiB memory

20GiB disk space

Max 100Mbps bandwidth

System diagrams

Named my project as Fabre

cite: https://en.wikipedia.org/wiki/Jean-Henri_Fabre

https://en.wikipedia.org/wiki/Jean-Henri_Fabre

Why Fabre?

Fabre is “The father of modern entomology” - the study of insects(bugs)

Just reuse previous (maybe) similar project (fabre.debian.net)

Concept of Fabre (again)

Make “unstable life” comfortable

Fix a bug (by finding a bug that no one working on)

Triage a bug (by sending control E-mail easily)

Avoid affected bugs (by checking installed packages)

Finding a bug that no one
working on

Show each number of comments (orange background color means no one
working on yet)

Sending control E-mail easily

Show each mailto: button to control bugs

Easy to view blocked bugs

List blocked bugs appropriately

Finding affected important bugs

How Fabre is good enough to
work?

Now ready to DEMO

Current status of Fabre

Tracked bugs: about 89,000 (UDD: 90,780)
Archived bugs: 720,000 (UDD: 85,0331)

Import bugs: every 1 hour

Update affected bugs: every 1 day

Disk usage (Database): about 1.5 GiB

Weak point about Fabre

Sometimes Killed by OOM, need more memory!

Conclusion

There are plenty room of improvements to develop

In my experiment, mashup some data sources may improve UX

bug report (E-mail archives)

UDD metadata (Popcon and package metadata)

installed packages list (popularity-contest)

Any questions?

Could you speak slowly if you have a question, please?

