
Three Ruby usages Powered by Rabbit 2.1.4

Three Ruby usages

Kouhei Sutou
ClearCode Inc.

RubyKaigi 2014
2014/09/20



Three Ruby usages Powered by Rabbit 2.1.4

Silver sponsor



Three Ruby usages Powered by Rabbit 2.1.4

Goal

You know three Ruby usages
High-level interface✓

Glue✓

Embed✓

✓

You can remember them later✓



Three Ruby usages Powered by Rabbit 2.1.4

Targets

High-level interface
Pure Rubyists✓

✓

Glue
Rubyists who can write C/C++✓

✓

Embed
Rubyists who also write C/C++✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Case study

Implement distributed 
full-text search engine in 
Ruby

Abbreviation: DFTSE = Distributed Full-Text Search Engine



Three Ruby usages Powered by Rabbit 2.1.4

DFTSE?

Full-
Text
Search
Engine

Distrubuted
Full-
Text
Search
Engine

1: Full-text search

2: Distribute
sub requests

3: Merge
responses



Three Ruby usages Powered by Rabbit 2.1.4

Why do we use DFTSE?

I'm developing 
Droonga

(A DFTSE implementation in Ruby)

😃



Three Ruby usages Powered by Rabbit 2.1.4

High-level interface

Three Ruby usages

High-level interface

Target: Pure Rubyists✓

✓

Glue✓

Embed✓



Three Ruby usages Powered by Rabbit 2.1.4

High-level interface

Provides
lower layer feature to
higher layer

✓

With simpler/convenience API✓



Three Ruby usages Powered by Rabbit 2.1.4

High-level interface

Higher layer users

High-level
interface

Feature

Application/Library

by Yukihiro Matsumoto



Three Ruby usages Powered by Rabbit 2.1.4

Example

Developers

Vagrantfile

Build
development
environment

Vagrant

by Yuk i h i r o  M a t s u m o t o

Developers

Object based API

Access data in RDBMS

Active Record

by Yuk i h i r o  M a t s u m o t o

Vagrant Active Record



Three Ruby usages Powered by Rabbit 2.1.4

Droonga: High-level IF

DFTSE components

Full-text search engine✓

Messaging system✓

Cluster management✓

Process management✓



Three Ruby usages Powered by Rabbit 2.1.4

Messaging system

FTSE

DTFSE1: Full-text search

2: Distribute
sub requests

3: Merge
responses

Messaging
system

Worker
process



Three Ruby usages Powered by Rabbit 2.1.4

Messaging system

Provides
distributed search feature
Plan how to search✓

Distribute requests✓

Merge responses✓

✓

Users don't know details✓



Three Ruby usages Powered by Rabbit 2.1.4

Characteristic

Plan how to search
May speed up/down over 100 times✓

✓

Distribute requests
Network bound operation✓

✓

Merge responses
CPU and network bound operation✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Point

Algorithm is important
Need to find new/existing better 
algorithm

✓

"Rapid prototype and measure" 
feedback loop is helpful

✓

Ruby is good at rapid dev.✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Glue

Three Ruby usages

High-level interface✓

Glue

Target:
Rubyists who can write C/C++

✓

✓

Embed✓



Three Ruby usages Powered by Rabbit 2.1.4

Glue

Feature

Export
a feature

Glue

Ruby

Other
Language

Combine
features



Three Ruby usages Powered by Rabbit 2.1.4

Example

Feature

Active Record

Glue

libmysqlclient.so

mysql2 gem

Access to MySQL VM Provision

Vagrant

(VirtualBox) (Chef)



Three Ruby usages Powered by Rabbit 2.1.4

Why do we glue?

Reuse existing features✓



Three Ruby usages Powered by Rabbit 2.1.4

How to glue

Use external library
Implement bindings (mysql2 gem)✓

✓

Use external command
Spawn command (Vagrant)✓

✓

Use external service
Implement client✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Glue in Droonga

Rroonga: Groonga bindings
Groonga: FTSE C library (and server)✓

✓

Cool.io: libev bindings
libev: Event loop C library
(Based on I/O multiplexing and non-blocking I/O)

✓

✓

Serf: Clustering tool (in Droonga)✓



Three Ruby usages Powered by Rabbit 2.1.4

Rroonga in Droonga

FTSE

DTFSE1: Full-text search

2: Distribute
sub requests

3: Merge
responses

Messaging
system

Worker
process



Three Ruby usages Powered by Rabbit 2.1.4

FTSE in Droonga

Must be fast!✓

CPU bound processing✓



Three Ruby usages Powered by Rabbit 2.1.4

For fast Rroonga

Do heavy processing in C

Nice to have Ruby-ish API✓

✓

Less memory allocation
Cache internal buffer✓

✓

Multiprocessing
Groonga supports multiprocessing✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Search

Groonga::Database.open(ARGV[0])
entries = Groonga["Entries"]

entries.select do |record|
  record.description =~ "Ruby"
end



Three Ruby usages Powered by Rabbit 2.1.4

Search - Pure Ruby (ref)

Groonga::Database.open(ARGV[0])
entries = Groonga["Entries"]

entries.find_all do |record|
  # This block is evaluated for each record
  /Ruby/ =~ record.description
end



Three Ruby usages Powered by Rabbit 2.1.4

Search impl.

# (2) Evaluate expression in C
entries.select do |record|
  # (1) Build expression in Ruby
  # This block is evaluated only once
  record.description =~ "Ruby"
end



Three Ruby usages Powered by Rabbit 2.1.4

Search impl. - Fig.

Ruby

C

entries.select do |record|
  record.description =~ "Ruby"
end

Expression

Build Search
request

Result set

Evaluate expression
by Groonga project

by Groonga project



Three Ruby usages Powered by Rabbit 2.1.4

Search - Benchmark

Ruby (It's already showed)✓

C✓



Three Ruby usages Powered by Rabbit 2.1.4

Search - C

grn_obj *expr;
grn_obj *variable;
const gchar *filter = "description @ \"Ruby\"";
grn_obj *result;

GRN_EXPR_CREATE_FOR_QUERY(&ctx, table, expr, variable);
grn_expr_parse(&ctx, expr,
               filter, strlen(filter), NULL,
               GRN_OP_MATCH, GRN_OP_AND,
               GRN_EXPR_SYNTAX_SCRIPT);
result = grn_table_select(&ctx, table, expr, NULL, GRN_OP_OR);
grn_obj_unlink(&ctx, expr);
grn_obj_unlink(&ctx, result);



Three Ruby usages Powered by Rabbit 2.1.4

Search - Benchmark

Ruby impl. is fast enough 😃
Impl. Elapsed time

C 0.6ms
Ruby 0.8ms

(Full-text search with "Ruby" against 72632 records)



Three Ruby usages Powered by Rabbit 2.1.4

Embed

Three Ruby usages

High-level interface✓

Glue✓

Embed

Target:
Rubyists who also write C/C++

✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Embed

C/C++ application
C/C++ library

Implement
some features
in Ruby

by Yukihiro Matsumoto

C/C++ application
C/C++ library

Plugin API
Conifugration

by Yukihiro Matsumoto

InterfaceInternal engine



Three Ruby usages Powered by Rabbit 2.1.4

Examples

Implement
query optimizer
in Ruby

by Yukihiro Matsumoto VIM

vim-ruby by Yukihiro Matsumoto

InterfaceInternal engine



Three Ruby usages Powered by Rabbit 2.1.4

Embed in Droonga

...
mruby
by The Groonga Project

by The Groonga Project

by The Groonga Project

by Yukihiro Matsumoto

by Yukihiro Matsumoto

by Yukihiro Matsumoto



Three Ruby usages Powered by Rabbit 2.1.4

CRuby vs. mruby

CRuby
Full featured!✓

Signal handler isn't needed 😞✓

✓

mruby
Multi-interpreters in a process!✓

You may miss some features 😞✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

mruby in Groonga

Query optimizer✓

Command interface (plan)
Interface and also high-level interface!✓

✓

Plugin API (plan)
Interface!✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Query optimizer

Query

Query
Optimizer

Optimize
Optimized

query

Evaluator

Full-text search

by Yukihiro Matsumoto

Result set



Three Ruby usages Powered by Rabbit 2.1.4

Query optimizer

Plan how to search
It's a bother 😞✓

✓

Light operation than FTS✓

Depends on data
(Choose effective index, use table scan and so on)

✓



Three Ruby usages Powered by Rabbit 2.1.4

Example

rank < 200 && rank > 100



Three Ruby usages Powered by Rabbit 2.1.4

Simple impl.

rank 1 2 100 200 10000...

rank > 100

rank < 200

&&

101 199

rank < 200 && rank > 100

... ... ...

101 199...



Three Ruby usages Powered by Rabbit 2.1.4

Simple impl.

Slow against
many out of range data

✓



Three Ruby usages Powered by Rabbit 2.1.4

Optimized impl.

rank 1 2 100 200 10000...

100 < rank < 200

101 199

rank < 200 && rank > 100

... ... ...

101 199...



Three Ruby usages Powered by Rabbit 2.1.4

Is embedding reasonable?

Measure



Three Ruby usages Powered by Rabbit 2.1.4

Measure

mruby overhead✓

Speed-up by optimization✓



Three Ruby usages Powered by Rabbit 2.1.4

Overhead

Small overhead: Reasonable😃
# conds mruby Elapsed

1 ○ 0.24ms
1 × 0.16ms
4 ○ 0.45ms
4 × 0.19ms



Three Ruby usages Powered by Rabbit 2.1.4

Speed-up

Fast for many data:Reasonable😃
# records mruby no mruby

1000 0.29ms 0.31ms
10000 0.31ms 2.3ms
100000 0.26ms 21.1ms
1000000 0.26ms 210.2ms



Three Ruby usages Powered by Rabbit 2.1.4

Note

Embedding needs many works
Write bindings, import mruby your 
build system and ...

✓

✓

How to test your mruby part?
And how to debug?✓

✓



Conclusion



Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 1

Describe three Ruby usages
High-level interface✓

Glue✓

Embed✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 2

High-level interface
Target: Pure Rubyists✓

Provides lower layer feature to 
higher layer w/ usable interface

✓

Ruby's flexibility is useful✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 3

Glue
Target:
Rubyists who can write C/C++

✓

Why: Reuse existing feature✓

To be fast, do the process in C✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 4

Embed
Target:
Rubyists who also write C/C++

✓

Why:
Avoid bother programming by Ruby

✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 5

Embed
Is it reasonable for your case?✓

You need many works✓

Very powerful
if your case is reasonable😃

✓

✓



Three Ruby usages Powered by Rabbit 2.1.4

Announcement

ClearCode Inc.
A silver sponsor✓

Is recruiting✓

Will do readable code workshop✓

✓

The next Groonga conference
It's held at 11/29✓

✓


