Three Ruby usages

Kouhe1i Sutou

ClearCode Inc.

RubyKaigi 2014
2014/09/20

eeeeeeeeeeeeeee

(.(“,Inarsimdr:

J

Silver sponsor

SILVER SPONSORS

ClearCode Inc.

ClearCode runs free software business and contributes to free software.

Three Ruby usages Powered by Rabbit 2.1.4

Goal

v You know three Ruby usages
v High-level interface

v Glue
v Embed

v You can remember them later

Three Ruby usages Powered by Rabbit 2.1.4

Targets

v High-level interface
v Pure Rubyists

v Glue
v Rubyists who can write C/C++

v Embed
v Rubyists who also write C/C++

Three Ruby usages Powered by Rabbit 2.1.4

(.fflr\or{;imdr\

Case study

Implement distributed
full-text search engine 1in
Ruby

Abbreviation: DFTSE = Distributed Full-Text Search Engine

Three Ruby usages Powere d by Rabbit 2.1.4

(Cleariode

DFTSE? !

{ 1: Full-text search }]
Distrubuted
i T Full-
Text

2: Distribute 3: Merge Search
sub requests responses Engine
| \t:::><:f/:::;f’ ! Full-
N7 Text
//>><\ Search

Engine

\

Three Ruby usages Powered by Rabbit 2.1.4

rCode
/

Why do we use DFTSE?

I'm developing
Droonga

(A DFTSE implementation in Ruby)

®

eeeeeeeeeeeeeee

(. ClearCode

High-level interface

Three Ruby usages

v High-level interface
v Target: Pure Rubyists

v Glue
v/ Embed

eeeeeeeeeeeeeee

(.('\ earCode

High-level interface

/

v Provides
lower layer feature to
higher layer

v With simpler/convenience API

eeeeeeeeeeeeeee

(-Plr\::rsi;imdn

High-level interface

Higher layer users

High-Tlevel
interface

o tudhiro Matsnts

Feature

Application/Library

(-Plr\:lrsi;imdn

Example

Vagrant Active Record

Developers Developers

Vagrantfile al— —| Object based APIJI—

Build
development Access data in RDBMS
environment

Vagrant Active Record

Three Ruby usages

Powered by Rabbit 2.1.4

CClearCode

Droonga: High-level IF

/

DFTSE components
v Full-text search engine

v Messaging system
v Cluster management

v Process management

eeeeeeeeeeeeeee

Three

Ruby usages

((“,Ingr?;mdr\

Messaging system

DTFSE

FTSE

Messaging
system

Powere d by Rabbit 2.1.4

(.('\ earCode

Messaging system

v Provides
distributed search feature

v/ Plan how to search

v Distribute requests

v Merge responses

v Users don't know details

Three Ruby usages Powered by Rabbit 2.1.4

Characteristic

v Plan how to search
v May speed up/down over 100 times

v Distribute requests

v Network bound operation

4 Merge responses

v CPU and network bound operation

Three Ruby usages Powered by Rabbit 2.1.4

Point

v Algorithm is important

v Need to find new/existing better
algorithm

v "Rapid prototype and measure"
feedback loop is helpful

v Ruby 1s good at rapid dev.

Three Ruby usages Powered by Rabbit 2.1.4

(.(‘?r\m‘si;imdh

Glue

Three Ruby usages
v High-level interface

v Glue

v Target:
Rubyists who can write C/C++

v Embed

Three Ruby usages Powere d by Rabbit 2.1.4

Glue

(-Plr\:lrsi;imdn

Export Combine
a feature
features
Ruby | 4 | 4
v
Other V1
Language
Feature Glue

Three Ruby usages

Powered by Rabbit 2.1.4

Three

Ruby usages

Example

Active Record

| 4

mysql2 gem

(-Plr\::rsi;imdn

1

vl
Access to MySQ[W

|
Vagrant

libmysqlclient.so

VM

Provision

(VirtualBox) (Chef)

Feature

Glue

d by Rabbit 2.1.4

llhy do we glue?

v Reuse existing features

eeeeeeeeeeeeeee

How to glue

v Use external library

v Implement bindings (mysq12 gem)

v Use external command

v Spawn command (vagrant)

v Use external service
v Implement client

Three Ruby usages Powered by Rabbit 2.1.4

(.fflr\or{;imdr\

Glue in Droonga

v Rroonga: Groonga bindings
v’Groonga: FTSE C library (and server)

v Cool.1o0: libev bindings

v 1ibev: Event loop C library
(Based on I/0 multiplexing and non-blocking I/0)

v Serf: Clustering tool (in droonge)

Three Ruby usages Powere d by Rabbit 2.1.4

Three

Ruby usages

(ﬁlhar?mdn

Rroonga in Droonga

rr¢’nga

rr¢nga

rr¢nga

rr¢nga

rr¢’nga

rr¢’nga

rr¢’nga

FTSE

eeeee

d by Rabbit 2.1.4

CClearCode

FTSE in Droonga

v Must be fast!

v CPU bound processing

eeeeeeeeeeeeeee

(ﬁihor?mrlr\/

For fast Rroonga

v Do heavy processing in C
v Nice to have Ruby-ish API

v Less memory allocation
v Cache internal buffer

v Multiprocessing

v Groonga supports multiprocessing

Three Ruby usages Powere d by Rabbit 2.1.4

(-Fflh::rst‘imrin

Search

Groonga: :Database.open(ARGV[Q])
entries = Groonga["Entries"”]

entries.select do |record|
record.description =~ "Ruby"
end

Three Ruby usages Powere d by Rabbit 2.1.4

(.fflr\or{;imdr\

Search - Pure Ruby (ref)”’

Groonga: :Database.open(ARGV[0])
entries = Groonga["Entries"]

entries.find_all do |record|
This block is evaluated for each record
/Ruby/ =~ record.description

end

ree Ruby usages Powere d by Rabbit 2.1.4

(-Plr\::rsi;imdn

Search impl.

(2) Evaluate expression in C
entries.select do |record]|
(1) Build expression in Ruby
This block is evaluated only once
record.description =~ "Ruby"
end

Three Ruby usages Powere d by Rabbit 2.1.4

Three

nnnnnnnnnnnnnnnn

(fflr\f:r?imdh

Search impl. - Fig.

entries.select do |record|
| record.description =~ "Ruby’|
end|

Buildl Search
request

Expression Result set

aaaaaaaaaaaaaaaa

Ruby usages

d by Rabbit 2.1.4

(ﬁinor?mrir\

Search - Benchmark '

V4 RUby (It's already showed)

v C

eeeeeeeeeeeeeee

Search - C

(.(‘?r\m‘si;imdh

grn_obj *expr;

grn_obj *variable;

const gchar *filter = "description @ \"Ruby\"";
grn_obj *result;

GRN_EXPR_CREATE_FOR_QUERY(&ctx, table, expr, variable);
grn_expr_parse(&ctx, expr,
filter, strlen(filter), NULL,
GRN_OP_MATCH, GRN_OP_AND,
GRN_EXPR_SYNTAX_SCRIPT);

result = grn_table_select(&ctx, table, expr, NULL, GRN_OP_OR);

grn_obj_unlink(&ctx, expr);
grn_obj_unlink(&ctx, result);

Three Ruby usages

Powered by Rabbit 2.1.4

((“,Ir\grst;tmdn

J

Search - Benchmark

Ruby impl. 1s fast enough

Impl. Elapsed time
C 0.6ms
Ruby 0.8ms

(Full-text search with "Ruby" against 72632 records)

eeeeeeeeeeeeeee

(.(‘?r\m‘si;imdh

Embed

Three Ruby usages
v High-level interface

v Glue

v Embed

v Target:
Rubyists who also write C/C++

Three Ruby usages Powere d by Rabbit 2.1.4

(-Plr\:lrsi;imdn

Embed

Internal engine Interface

L/

C/C++ application Plugin AP] ==
C/C++ library Conifugration

Implement
some features |
in Ruby

C/C++ application
C/C++ library

Three Ruby usages Powere d by Rabbit 2.1.4

(ﬁlnar?mdn

Examples

Internal engine Interface

[
grOnga — vim-ruby e

Implement. BN VIM
query optimizer
in Ruby

Three Ruby usages Powere d by Rabbit 2.1.4

((“,Ingr?;mdr\

Embed in Droonga

eeeeeeeeeeeeeee

CRuby vs. mruby
v CRuby

v Full featured!
v Signal handler isn't needed

v mruby

v Multi-interpreters in a process!

v You may miss some features

Three Ruby usages Powered by Rabbit 2.1.4

(ﬁinor?mrir\

mruby in Groonga

v Query optimizer

v Command interface (plan)

v/ Interface and also high-level interface!

v Plugin API (plan)

v/ Interface!

Three Ruby usages Powere d by Rabbit 2.1.4

(ﬁinor?mrir\

Query optimizer

. Optimized
Optimize uer Full-text search
Query 5 query
~ | Query J
Optimizer

Evaluator

Result set

Three Ruby usages Powere d by Rabbit 2.1.4

(.(‘?r\m‘si;imdh

Query optimizer

v Plan how to search
v It's a bother

v Light operation than FTS
v Depends on data

(Choose effective index, use table scan and so on)

Three Ruby usages Powere d by Rabbit 2.1.4

Example

((“,Ie;arzinde

J

rank < 200 && rank > 100

eeeeeeeeeeeeeee

Three

Ruby usages

Simple impl.

rank (1 2 ---100101 --- 199200 --- --- 10000

rank < 200

| rank > 100

&&

101 --- 199
rank < 200 && rank > 100

(fflr\f:r?imdh

ered by Rabbit 2.1.4

Simple impl.

v Slow against
many out of range data

(. ClearCode

eeeeeeeeeeeeeee

Optimized impl.

rank /1 2---100101 ---199200 --- --- 10000

100 < rank < 200

101 --- 199
rank < 200 && rank > 100

eeeeeeeeeeeeeee

Is embedding reasonable?

Measure

eeeeeeeeeeeeeee

Measure

v/ mruby overhead

v Speed-up by optimization

Three Ruby usages Powered by Rabbit 2.1.4

(.(“,Inarsimdr:

Overhead

Small overhead: Reasonable®

conds mruby Elapsed
110 0.24ms
1] X 0.16ms
410 0.45ms
4| X 0.19ms

eeeeeeeeeeeeeee

(ﬁlnar?mdn

Speed-up

Fast for many data:Reasonable®

records mruby no mruby
1000 0.29ms 0.31ms
10000 0.31ms 2.3ms
100000 0.26ms 21.1ms
1000000 0.26ms 210.2ms

eeeeeeeeeeeeeee

Note

v Embedding needs many works
v Write bindings, import mruby your
build system and ...
v How to test your mruby part?
v And how to debug?

Three Ruby usages Powered by Rabbit 2.1.4

Conclusion

Conclusion 1

v Describe three Ruby usages
v High-level interface

v Glue
v Embed

Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 2

v High-level interface
v Target: Pure Rubyists

v Provides lower layer feature to
higher layer w/ usable interface

v Ruby's flexibility is useful

Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 3

v Glue

v Target:
Rubyists who can write C/C++

v Why: Reuse existing feature

v To be fast, do the process in C

Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 4

v/ Embed

v Target:
Rubyists who also write C/C++

v Why:
Avoid bother programming by Ruby

Three Ruby usages Powered by Rabbit 2.1.4

Conclusion 5

v Embed

v Is 1t reasonable for your case?
v You need many works

v Very powerful
if your case is reasonable®

Three Ruby usages Powered by Rabbit 2.1.4

Announcement
v/ ClearCode Inc.

v A silver sponsor
v Is recruiting

v Will do readable code workshop

v The next Groonga conference
v It's held at 11/29

Three Ruby usages Powered by Rabbit 2.1.4

