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Silver sponsor

SILVER SPONSORS

ClearCode Inc.

ClearCode runs free software business and contributes to free software.
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Goal

v You know three Ruby usages
v High-level interface

v Glue
v Embed

v You can remember them later
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Targets

v High-level interface
v Pure Rubyists

v Glue
v Rubyists who can write C/C++

v Embed
v Rubyists who also write C/C++
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Case study

Implement distributed
full-text search engine 1in
Ruby

Abbreviation: DFTSE = Distributed Full-Text Search Engine
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DFTSE? !

{ 1: Full-text search } ]
Distrubuted
i T Full-
Text

2: Distribute 3: Merge Search
sub requests responses Engine
| \t:::><:f/:::;f’ ! Full-
N7 Text
//>><\ Search

Engine

\
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Why do we use DFTSE?

I'm developing
Droonga

(A DFTSE implementation in Ruby)

®
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High-level interface

Three Ruby usages

v High-level interface
v Target: Pure Rubyists

v Glue
v/ Embed
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High-level interface

/

v Provides
lower layer feature to
higher layer

v With simpler/convenience API
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High-level interface

Higher layer users

High-Tlevel
interface

o tudhiro Matsnts

Feature

Application/Library
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Example

Vagrant Active Record

Developers Developers

Vagrantfile al— —| Object based APIJI—

Build
development Access data in RDBMS
environment

Vagrant Active Record
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Droonga: High-level IF

/

DFTSE components
v Full-text search engine

v Messaging system
v Cluster management

v Process management
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Messaging system

DTFSE

FTSE

Messaging
system
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Messaging system

v Provides
distributed search feature

v/ Plan how to search

v Distribute requests

v Merge responses

v Users don't know details
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Characteristic

v Plan how to search
v May speed up/down over 100 times

v Distribute requests

v Network bound operation

4 Merge responses

v CPU and network bound operation
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Point

v Algorithm is important

v Need to find new/existing better
algorithm

v "Rapid prototype and measure"
feedback loop is helpful

v Ruby 1s good at rapid dev.
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Glue

Three Ruby usages
v High-level interface

v Glue

v Target:
Rubyists who can write C/C++

v Embed
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Glue
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Export Combine
a feature
features
Ruby | 4 | 4
v
Other V1
Language
Feature Glue
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Example

Active Record

| 4

mysql2 gem
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1

vl
Access to MySQ[W

|
Vagrant

libmysqlclient.so

VM

Provision

(VirtualBox) (Chef)

Feature

Glue
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llhy do we glue?

v Reuse existing features
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How to glue

v Use external library

v Implement bindings (mysq12 gem)

v Use external command

v Spawn command (vagrant)

v Use external service
v Implement client
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Glue in Droonga

v Rroonga: Groonga bindings
v’Groonga: FTSE C library (and server)

v Cool.1o0: libev bindings

v 1ibev: Event loop C library
(Based on I/0 multiplexing and non-blocking I/0)

v Serf: Clustering tool (in droonge)
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Rroonga in Droonga

rr¢’nga

rr¢nga

rr¢nga

rr¢nga

rr¢’nga

rr¢’nga

rr¢’nga

FTSE

eeeee
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FTSE in Droonga

v Must be fast!

v CPU bound processing
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For fast Rroonga

v Do heavy processing in C
v Nice to have Ruby-ish API

v Less memory allocation
v Cache internal buffer

v Multiprocessing

v Groonga supports multiprocessing
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Search

Groonga: :Database.open(ARGV[Q])
entries = Groonga[ "Entries"”]

entries.select do |record|
record.description =~ "Ruby"
end
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Search - Pure Ruby (ref)”’

Groonga: :Database.open(ARGV[0])
entries = Groonga[ "Entries"]

entries.find_all do |record|
# This block is evaluated for each record
/Ruby/ =~ record.description

end
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Search impl.

# (2) Evaluate expression in C
entries.select do |record]|
# (1) Build expression in Ruby
# This block is evaluated only once
record.description =~ "Ruby"
end
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Search impl. - Fig.

entries.select do |record|
| record.description =~ "Ruby’|
end|

Buildl Search
request

Expression Result set

aaaaaaaaaaaaaaaa
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Search - Benchmark '

V4 RUby (It's already showed)

v C

eeeeeeeeeeeeeee



Search - C
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grn_obj *expr;

grn_obj *variable;

const gchar *filter = "description @ \"Ruby\"";
grn_obj *result;

GRN_EXPR_CREATE_FOR_QUERY(&ctx, table, expr, variable);
grn_expr_parse(&ctx, expr,
filter, strlen(filter), NULL,
GRN_OP_MATCH, GRN_OP_AND,
GRN_EXPR_SYNTAX_SCRIPT);

result = grn_table_select(&ctx, table, expr, NULL, GRN_OP_OR);

grn_obj_unlink(&ctx, expr);
grn_obj_unlink(&ctx, result);

Three Ruby usages
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Search - Benchmark

Ruby impl. 1s fast enough

Impl. Elapsed time
C 0.6ms
Ruby 0.8ms

(Full-text search with "Ruby" against 72632 records)
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Embed

Three Ruby usages
v High-level interface

v Glue

v Embed

v Target:
Rubyists who also write C/C++
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Embed

Internal engine Interface

L/

C/C++ application Plugin AP] ==
C/C++ library Conifugration

Implement
some features |
in Ruby

C/C++ application
C/C++ library
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Examples

Internal engine Interface

[
grOnga —  vim-ruby e

Implement. BN VIM
query optimizer
in Ruby
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Embed in Droonga
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CRuby vs. mruby
v CRuby

v Full featured!
v Signal handler isn't needed

v mruby

v Multi-interpreters in a process!

v You may miss some features
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mruby in Groonga

v Query optimizer

v Command interface (plan)

v/ Interface and also high-level interface!

v Plugin API (plan)

v/ Interface!

Three Ruby usages Powere d by Rabbit 2.1.4



(ﬁinor?mrir\

Query optimizer

. Optimized
Optimize uer Full-text search
Query 5 query
~ | Query J
Optimizer

Evaluator

Result set
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Query optimizer

v Plan how to search
v It's a bother

v Light operation than FTS
v Depends on data

(Choose effective index, use table scan and so on)
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rank < 200 && rank > 100
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Simple impl.

rank (1 2 ---100101 --- 199200 --- --- 10000

rank < 200

| rank > 100

&&

101 --- 199
rank < 200 && rank > 100
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Simple impl.

v Slow against
many out of range data

(. ClearCode
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Optimized impl.

rank /1 2---100101 ---199200 --- --- 10000

100 < rank < 200

101 --- 199
rank < 200 && rank > 100
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Is embedding reasonable?

Measure

eeeeeeeeeeeeeee



Measure

v/ mruby overhead

v Speed-up by optimization
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Overhead

Small overhead: Reasonable®

# conds mruby Elapsed
110 0.24ms
1] X 0.16ms
410 0.45ms
4| X 0.19ms

eeeeeeeeeeeeeee



(ﬁlnar?mdn

Speed-up

Fast for many data:Reasonable®

# records mruby no mruby
1000 0.29ms 0.31ms
10000 0.31ms 2.3ms
100000 0.26ms 21.1ms
1000000 0.26ms 210.2ms
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Note

v Embedding needs many works
v Write bindings, import mruby your
build system and ...
v How to test your mruby part?
v And how to debug?
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Conclusion



Conclusion 1

v Describe three Ruby usages
v High-level interface

v Glue
v Embed
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Conclusion 2

v High-level interface
v Target: Pure Rubyists

v Provides lower layer feature to
higher layer w/ usable interface

v Ruby's flexibility is useful
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Conclusion 3

v Glue

v Target:
Rubyists who can write C/C++

v Why: Reuse existing feature

v To be fast, do the process in C
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Conclusion 4

v/ Embed

v Target:
Rubyists who also write C/C++

v Why:
Avoid bother programming by Ruby
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Conclusion 5

v Embed

v Is 1t reasonable for your case?
v You need many works

v Very powerful
if your case is reasonable®
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Announcement
v/ ClearCode Inc.

v A silver sponsor
v Is recruiting

v Will do readable code workshop

v The next Groonga conference
v It's held at 11/29
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