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Goal

You know three Ruby usages
High-level interface✓

Glue✓

Embed✓

✓

You can remember them later✓
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Targets

High-level interface
Pure Rubyists✓

✓

Glue
Rubyists who can write C/C++✓

✓

Embed
Rubyists who also write C/C++✓

✓
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Case study

Implement distributed 
full-text search engine in 
Ruby

Abbreviation: DFTSE = Distributed Full-Text Search Engine
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DFTSE?

Full-
Text
Search
Engine

Distrubuted
Full-
Text
Search
Engine

1: Full-text search

2: Distribute
sub requests

3: Merge
responses
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Why do we use DFTSE?

I'm developing 
Droonga

(A DFTSE implementation in Ruby)

😃
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High-level interface

Three Ruby usages

High-level interface

Target: Pure Rubyists✓

✓

Glue✓

Embed✓
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High-level interface

Provides
lower layer feature to
higher layer

✓

With simpler/convenience API✓
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High-level interface

Higher layer users

High-level
interface

Feature

Application/Library

by Yukihiro Matsumoto
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Example

Developers

Vagrantfile

Build
development
environment

Vagrant

by Yuk i h i r o  M a t s u m o t o

Developers

Object based API

Access data in RDBMS

Active Record

by Yuk i h i r o  M a t s u m o t o

Vagrant Active Record
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Droonga: High-level IF

DFTSE components

Full-text search engine✓

Messaging system✓

Cluster management✓

Process management✓
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Messaging system

FTSE

DTFSE1: Full-text search

2: Distribute
sub requests

3: Merge
responses

Messaging
system

Worker
process



Three Ruby usages Powered by Rabbit 2.1.4

Messaging system

Provides
distributed search feature
Plan how to search✓

Distribute requests✓

Merge responses✓

✓

Users don't know details✓
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Characteristic

Plan how to search
May speed up/down over 100 times✓

✓

Distribute requests
Network bound operation✓

✓

Merge responses
CPU and network bound operation✓

✓
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Point

Algorithm is important
Need to find new/existing better 
algorithm

✓

"Rapid prototype and measure" 
feedback loop is helpful

✓

Ruby is good at rapid dev.✓

✓
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Glue

Three Ruby usages

High-level interface✓

Glue

Target:
Rubyists who can write C/C++

✓

✓

Embed✓
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Glue

Feature

Export
a feature

Glue

Ruby

Other
Language

Combine
features
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Example

Feature

Active Record

Glue

libmysqlclient.so

mysql2 gem

Access to MySQL VM Provision

Vagrant

(VirtualBox) (Chef)
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Why do we glue?

Reuse existing features✓
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How to glue

Use external library
Implement bindings (mysql2 gem)✓

✓

Use external command
Spawn command (Vagrant)✓

✓

Use external service
Implement client✓

✓
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Glue in Droonga

Rroonga: Groonga bindings
Groonga: FTSE C library (and server)✓

✓

Cool.io: libev bindings
libev: Event loop C library
(Based on I/O multiplexing and non-blocking I/O)

✓

✓

Serf: Clustering tool (in Droonga)✓
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Rroonga in Droonga

FTSE

DTFSE1: Full-text search

2: Distribute
sub requests

3: Merge
responses

Messaging
system

Worker
process
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FTSE in Droonga

Must be fast!✓

CPU bound processing✓
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For fast Rroonga

Do heavy processing in C

Nice to have Ruby-ish API✓

✓

Less memory allocation
Cache internal buffer✓

✓

Multiprocessing
Groonga supports multiprocessing✓

✓
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Search

Groonga::Database.open(ARGV[0])
entries = Groonga["Entries"]

entries.select do |record|
  record.description =~ "Ruby"
end
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Search - Pure Ruby (ref)

Groonga::Database.open(ARGV[0])
entries = Groonga["Entries"]

entries.find_all do |record|
  # This block is evaluated for each record
  /Ruby/ =~ record.description
end
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Search impl.

# (2) Evaluate expression in C
entries.select do |record|
  # (1) Build expression in Ruby
  # This block is evaluated only once
  record.description =~ "Ruby"
end
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Search impl. - Fig.

Ruby

C

entries.select do |record|
  record.description =~ "Ruby"
end

Expression

Build Search
request

Result set

Evaluate expression
by Groonga project

by Groonga project
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Search - Benchmark

Ruby (It's already showed)✓

C✓
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Search - C

grn_obj *expr;
grn_obj *variable;
const gchar *filter = "description @ \"Ruby\"";
grn_obj *result;

GRN_EXPR_CREATE_FOR_QUERY(&ctx, table, expr, variable);
grn_expr_parse(&ctx, expr,
               filter, strlen(filter), NULL,
               GRN_OP_MATCH, GRN_OP_AND,
               GRN_EXPR_SYNTAX_SCRIPT);
result = grn_table_select(&ctx, table, expr, NULL, GRN_OP_OR);
grn_obj_unlink(&ctx, expr);
grn_obj_unlink(&ctx, result);
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Search - Benchmark

Ruby impl. is fast enough 😃
Impl. Elapsed time

C 0.6ms
Ruby 0.8ms

(Full-text search with "Ruby" against 72632 records)
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Embed

Three Ruby usages

High-level interface✓

Glue✓

Embed

Target:
Rubyists who also write C/C++

✓

✓
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Embed

C/C++ application
C/C++ library

Implement
some features
in Ruby

by Yukihiro Matsumoto

C/C++ application
C/C++ library

Plugin API
Conifugration

by Yukihiro Matsumoto

InterfaceInternal engine
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Examples

Implement
query optimizer
in Ruby

by Yukihiro Matsumoto VIM

vim-ruby by Yukihiro Matsumoto

InterfaceInternal engine
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Embed in Droonga

...
mruby
by The Groonga Project

by The Groonga Project

by The Groonga Project

by Yukihiro Matsumoto

by Yukihiro Matsumoto

by Yukihiro Matsumoto
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CRuby vs. mruby

CRuby
Full featured!✓

Signal handler isn't needed 😞✓

✓

mruby
Multi-interpreters in a process!✓

You may miss some features 😞✓

✓
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mruby in Groonga

Query optimizer✓

Command interface (plan)
Interface and also high-level interface!✓

✓

Plugin API (plan)
Interface!✓

✓
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Query optimizer

Query

Query
Optimizer

Optimize
Optimized

query

Evaluator

Full-text search

by Yukihiro Matsumoto

Result set
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Query optimizer

Plan how to search
It's a bother 😞✓

✓

Light operation than FTS✓

Depends on data
(Choose effective index, use table scan and so on)

✓
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Example

rank < 200 && rank > 100
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Simple impl.

rank 1 2 100 200 10000...

rank > 100

rank < 200

&&

101 199

rank < 200 && rank > 100

... ... ...

101 199...
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Simple impl.

Slow against
many out of range data

✓
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Optimized impl.

rank 1 2 100 200 10000...

100 < rank < 200

101 199

rank < 200 && rank > 100

... ... ...

101 199...
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Is embedding reasonable?

Measure
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Measure

mruby overhead✓

Speed-up by optimization✓
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Overhead

Small overhead: Reasonable😃
# conds mruby Elapsed

1 ○ 0.24ms
1 × 0.16ms
4 ○ 0.45ms
4 × 0.19ms
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Speed-up

Fast for many data:Reasonable😃
# records mruby no mruby

1000 0.29ms 0.31ms
10000 0.31ms 2.3ms
100000 0.26ms 21.1ms
1000000 0.26ms 210.2ms
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Note

Embedding needs many works
Write bindings, import mruby your 
build system and ...

✓

✓

How to test your mruby part?
And how to debug?✓

✓



Conclusion
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Conclusion 1

Describe three Ruby usages
High-level interface✓

Glue✓

Embed✓

✓
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Conclusion 2

High-level interface
Target: Pure Rubyists✓

Provides lower layer feature to 
higher layer w/ usable interface

✓

Ruby's flexibility is useful✓

✓
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Conclusion 3

Glue
Target:
Rubyists who can write C/C++

✓

Why: Reuse existing feature✓

To be fast, do the process in C✓

✓
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Conclusion 4

Embed
Target:
Rubyists who also write C/C++

✓

Why:
Avoid bother programming by Ruby

✓

✓
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Conclusion 5

Embed
Is it reasonable for your case?✓

You need many works✓

Very powerful
if your case is reasonable😃

✓

✓
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Announcement

ClearCode Inc.
A silver sponsor✓

Is recruiting✓

Will do readable code workshop✓

✓

The next Groonga conference
It's held at 11/29✓

✓


