OCl-compatible
haconiwa

— hurdles and advantages —
2019-04-12
RejectKaigi 2019 @ pixiv Inc

Yusuke Nakamura (unasuke)



about me

® Yusuke Nakamura (also known as “unasuke”)

= Employee of BANK Inc

= Develop Rails application, manage Infrastructure
https://cash.jp/

= RubyKaigi 2019 helper

® GitHub @unasuke
® Twitter @yu_sukel994

® Mastodon @unasuke@mstdn.unasuke.comy



https://cash.jp/

introduction

First, to clearly where we stand.



Your perception of containers
® Are you use container?
= |n production env? or(and) development env?
= Use Docker? or the other one?

= Orchestrate by ECS? or GKE? or on-premises?



We use Docker mostly

® de facto standard of a Linux container

= Easy installation

= for Mac, for Windows...

= The first famous Linux container inplementation



“Container” is not equal “Docker”
m Before Docker
= |XC (Linux)
= Jail (FreeBSD)

= etc...

m After Docker
® Cri-0
m Kata Container

= etc...



What’s haconiwa
® The Linux contianer runtime written by C and
mruby

® https://speakerdeck.com/udzura/the-alternative-
container?slide=11

OClDspecz#d L bHim/cd C EIFHEL TLA
()

® Independent from “Container” world

= “Container” means OCI


https://speakerdeck.com/udzura/the-alternative-container?slide=11

What’s OCI

The initialism of “Open Container Initiative”

https://www.opencontainers.org/

®m OCl specs
= [mage spec
= specifitation of the container image format

= Runtime spec

= specification of the container runtime interface


https://www.opencontainers.org/

CRI and Kubernetes world

CRI
protobuf

_4

® kubelet uses Container-Runtime-Interface(CRI) to
communicate to container runtime

grpc
client

The kubelet is the primary “node agent” that runs
on each node.




Diff of OCI/CRI compatible means...

m CRI compatible

® ysable as backend of kubelet

®m OCl compatible

= Exchangeable image and runtime

easy = CRI compatible = OCI compatible — hard



Why CRI-compatible?

haconiwa is just run container. Doesn’t orchestrate.
® Pros

= Orchestration by Kubernetes

m Cons
= Cannot use haconiwa-specific functions (hook)

" maybe...



Why OCI-compatible?

B Pros

= possible to share the existing assets

= hub.docker.com

® Cons
= Cannot use haconiwa-specific functions (hook)

= https://github.com/haconiwa/haconiwa/blob/master/
sample/hooks.haco

= maybe...



hurdles and advantages
® hurdles

® it’s hard to comply with the standard

® advantages

® more users

= wealth of existing assets



How to implement CRI

https://github.com/kubernetes/kubernetes/blob/
release-1.14/pkg/kubelet/apis/cri/runtime/vlalpha2/

api.proto
® Protocol Buffer

= RuntimeService
® |mageService

= and many messages

® middleware?


https://github.com/kubernetes/kubernetes/blob/release-1.14/pkg/kubelet/apis/cri/runtime/v1alpha2/api.proto

CRIl interface and haconiwa

® should start process to respond rpc

= currently, haconiwa is just a command not service(or
daemon)

® should implement rpc response interface



OCl specification and haconiwa
® image spec
= should import/export OCl image

® https://blog.unasuke.com/2018/read-oci-image-spec-

v101/

® runtime spec

m https://udzura.hatenablog.jp/entry/
2016/08/02/155913



https://blog.unasuke.com/2018/read-oci-image-spec-v101/
https://udzura.hatenablog.jp/entry/2016/08/02/155913

conclusion
B more resources, more users in OCI/CRI world

® but...

= compliant to CRI is hard

= compliant to OCl is harder than CRI



conclusion

» 55y
0 @yu_sukel994

HBE» B EKHD

Uchio KONDO % @udzura
OCIGE LW, —RBICL T NAABELTE Y., HAR—NILL

13:06 - 2018%11H308

https://twitter.com/yu sukel994/status/
1068355444928741376



https://twitter.com/yu_suke1994/status/1068355444928741376

