
Ruby Implementation of QUIC:
Progress and Challenges
unasuke (Yusuke Nakamura)

RubyKaigi 2023
2023-05-12



Self introduction

Name: unasuke (Yusuke Nakamura)

Work: freelance Web app developer @ Japan

Itamae gem maintainer, Kaigi on Rails Organizer

 GitHub https://github.com/unasuke

 Mastodon https://mstdn.unasuke.com/@unasuke

 Twitter https://twitter.com/yu_suke1994

https://github.com/unasuke
https://mstdn.unasuke.com/@unasuke
https://twitter.com/yu_suke1994


Ruby Association Grant

https://www.ruby.or.jp/en/news/20221027

https://www.ruby.or.jp/en/news/20221027


What is QUIC?

UDP-based communication protocol

HTTP/3 uses QUIC

Faster than HTTP/2 (TCP)

 image from https://github.com/quicwg/wg-materials

https://github.com/quicwg/wg-materials


What is QUIC? - Diagram by Robin Marx

 image from https://github.com/rmarx/h3-protocol-stack

https://github.com/rmarx/h3-protocol-stack


My talks

RubyKaigi Takeout 2021

"Ruby, Ractor, QUIC"

RubyKaigi 2022 (Tsu)

"Ruby, Ractor, QUIC"

Now (2023, Matsumoto)



Implement QUIC from scratch

Have you ever created a Rails application?



Implement QUIC from scratch

Have you ever implemented the QUIC protocol?



Implement QUIC from scratch

It's too difficult! 

When create a Rails application

learn from "Rails Guides" and "Rails Tutorial"

When create a QUIC implementation...?

RFCs are not a "implementation guide"



Try to implement QUIC once

To learn how to implement QUIC

Implement it once (how?)

Porting existing implementation!



Topics

Porting from Python to Ruby1. 

Rubyish QUIC implementation2. 

Future of my implementation3. 



Porting from Python to Ruby

https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-
from-python/

https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-from-python/


Porting from Python to Ruby

Can you port this Python code to Ruby?



Porting from Python to Ruby - Code amount



Porting from Python to Ruby - How I ported it

Keep the same structure as Python

Carelessly changed may cause getting stuck

Avoid porting asynchronous processing parts 

Difference of functionality

My lack of knowledge



Porting from Python to Ruby - Built-in types, bytes

https://github.com/aiortc/aioquic/blob/main/src/aioquic/_buffer.pyi

https://github.com/aiortc/aioquic/blob/main/src/aioquic/_buffer.pyi


Porting from Python to Ruby - Built-in types, bytes

bytes in Python

immutable (bytearray is not)

String in Ruby

mutable

has Encoding (not only ASCII)



Porting from Python to Ruby - Built-in types, bytes

Python returns 3

Ruby returns 1 (return 3 if use String#bytesize)



Porting from Python to Ruby - Built-in types, enum

 Python



Porting from Python to Ruby - Built-in types, enum

 Ruby



Porting from Python to Ruby - Built-in types, enum

"Oh! 1025 is the SignatureAlgorithm.RSA_PKCS1_SHA256 in TLS 1.3!"



Porting from Python to Ruby - Built-in types, tuple

 Python



Porting from Python to Ruby - Built-in types, tuple

 Ruby



Porting from Python to Ruby - Code style

 Python



Porting from Python to Ruby - Code style

 Ruby



Porting from Python to Ruby - Code style

 callback register in Python



Porting from Python to Ruby - Library API

Not only language themselves but also API differences.

Using OpenSSL functionality from...

Python (aioquic)

pyca/cryptography

https://github.com/pyca/cryptography

Ruby

openssl gem

https://github.com/ruby/openssl

(to implement TLS 1.3)

https://github.com/pyca/cryptography
https://github.com/ruby/openssl


Porting from Python to Ruby - Library API

looked for API calls to pyca/cryptography's1. 

find which C API of OpenSSL it corresponds to2. 

find how it is wrapped in the openssl gem3. 

port it to a Ruby API call in the openssl gem4. 



Porting from Python to Ruby - Library API example



Porting from Python to Ruby - Library API example



Porting from Python to Ruby - Result



Porting from Python to Ruby - Demo



Porting from Python to Ruby - Insights

QUIC IS VERY DIFFICULT1. 

TLS 1.3 IS ALSO VERY DIFFICULT2. 

"writing once" empowers me3. 



Porting from Python to Ruby - "Raioquic"

https://github.com/unasuke/raioquic

https://github.com/unasuke/raioquic


Rubyish QUIC implementation



Future of my implementation - How to make it Rubyish?

To make implementation Rubyish...

Use suitable features to Ruby (internal)

tuple → class or dedicated struct or data

bytes → IO::Buffer, not String

1. 

Adapt to existing API styles (public API)2. 



Future of my implementation - TLS in Ruby

High level API (use Net::HTTP)



Future of my implementation - TLS in Ruby

Low level API (use OpenSSL::SSL::SSLSocket)



Future of my implementation - Faraday style

Very high level API



Future of my implementation - Net::HTTP style

Net::HTTP style API



Future of my implementation - Vaporware

The APIs like I've been talking about, doesn't exist yet

next year...?

um...



Future of my implementation - Raise your hand time!

Are you running some Rails apps on production env?



Future of my implementation - Raise your hand time!

Are you running some Rails apps on production without reverse
proxies or load balancers?



Future of my implementation - Speed!

Most Rails app is behind of web server (load balancer)

TLS termination is high cost

(asset delivery)



Future of my implementation - QUIC diagram (again!)

 image from https://github.com/rmarx/h3-protocol-stack

https://github.com/rmarx/h3-protocol-stack


Future of my implementation - Faster language impls

C or Rust or...

socketry/protocol-quic gem wraps ngtcp2

created by Samuel-san (ioquatix)

"Unleashing the Power of Asynchronous HTTP with Ruby" in Day 3

ngtcp2/ngtcp2 written by C

https://github.com/socketry/protocol-quic
https://github.com/ngtcp2/ngtcp2


Future of my implementation - ngtcp2 used by curl

https://github.com/curl/curl/blob/master/docs/HTTP3.md

https://github.com/curl/curl/blob/master/docs/HTTP3.md


Future of my implementation - Worth of Pure Ruby

Research

Implementations that make it easy to change internal behavior
are useful

QUIC implementation itself

Helping QUIC implementation itself

e.g. Build data for test its behavior



Future of my implementation - Motivation

 https://github.com/quicwg/base-drafts/wiki/Implementations

https://github.com/quicwg/base-drafts/wiki/Implementations


Summary

Ported aioquic (Python) to Ruby

Diffs from language features, library API makes porting hard

Ported impl could communicate other impls

Creating Rubyish implementation

Uses Ruby's built-in features

Make it can apply existing idioms

This may be where this implementation would be useful

Research

QUIC implementation itself



Acknowledgments

Ruby Association

For adopting my project

Koichi Sasada-san

a mentor of the porting project

Kuwayama-san

Author of tttls1.3 gem

Daisuke Aritomo a.k.a. osyoyu

Adviser of this talk


