Ruby Implementation of QUIC:
Progress and Challenges
unasuke (Yusuke Nakamura) 8

RubyKaigi 2023
2023-05-12

RubyKaigi 2023

Self introduction

Name: unasuke (Yusuke Nakamura)
Work: freelance Web app developer @ Japan

[tamae gem maintainer, Kaigi on Rails Organizer

GitHub https://github.com/unasuke

Mastodon https://mstdn.unasuke.com/@unasuke

Twitter https://twitter.com/yu_sukel994

https://github.com/unasuke
https://mstdn.unasuke.com/@unasuke
https://twitter.com/yu_suke1994

Ruby Association Grant

Porting the QUIC protocol implementation from other languages and creating original
implementation in Ruby

Project Summary

The QUIC, an internet protocol standardized in 2021, is spreading rapidly, and implementations in various
programming languages are growing. Some programming languages have multiple implementations, but Ruby has
no publicly available implementation. This project aims to create a Ruby implementation of the QUIC protocol
eventually. As an initial step, we will port aioquic, a Python implementation of QUIC, to Ruby to establish
guidelines and knowledge for QUIC implementation.

Applicant Name

unasuke (Yusuke Nakamura)

https://www.ruby.or.jp/en/news/20221027

https://www.ruby.or.jp/en/news/20221027

What is QUIC?

m UDP-based communication protocol

m HTTP/3 uses QUIC
= Faster than HTTP/2 (TCP)

Qauic

image from https://github.com/quicwg/wg-materials

https://github.com/quicwg/wg-materials

What is QUIC? - Diagram by Robin Marx

HTTP semantics

Header compression ¢ Header compression ¢ o
(HPACK) p (QPACK) e

HTTP/2 HTTP/3

Prioritization Prioritization

Stream multiplexing

Stream multiplexing

Authentication Key negotiation

TLS

Authentication Key negotiation

TLS

Session resumption / 8-RTT

Session resumption / 9-RTT

Encryption/decryption Encryption/decryption

Connection migration

C"gg:;gf’” TCP retiabity C”:g:;gf’" QUIC -retiabiity

Connection oriented Connection oriented

UDP

Port numbers

Port numbers

IPv4 / IPV6

image from https://github.com/rmarx/h3-protocol-stack

https://github.com/rmarx/h3-protocol-stack

My talks

m RubyKaigi Takeout 2021

= "Ruby, Ractor, QUIC"

m RubyKaigi 2022 (Tsu)
= "Ruby, Ractor, QUIC"

= Now (2023, Matsumoto)

Ruby, Ractor, QUIC

unasuke (Yusuke Nakamura)

RubyKaigi Takeout 2021
2021-09-11

Y

Rubyalg! Takeout 2021

Do Pure Ruby Dreams Encrypted Binary Protocol?

unasuke (Yusuke Nakamura)

RubyKaigi 2022
2022-09-09

Implement QUIC from scratch

Have you ever created a Rails application?

I I -

Implement QUIC from scratch

Have you ever implemented the QUIC protocol?

I I -

Implement QUIC from scratch

It's too difficult!

m When create a Rails application

m |earn from "Rails Guides" and "Rails Tutorial"

®m When create a QUIC implementation...?

= RFCs are not a "implementation guide"

Try to implement QUIC once

m To learn how to implement QUIC
= Implement it once (how?)

= Porting existing implementation!

Topics

1. Porting from Python to Ruby
2. Rubyish QUIC implementation

3. Future of my implementation

Porting from Python to Ruby

To Ruby From Python

Python is another very nice general purpose programming language. Going
from Python to Ruby, you'll find that there’s a little bit more syntax to learn
than with Python.

Similarities
As with Python, in Ruby,...

= There's an interactive prompt (called irb).

= You can read docs on the command line (with the ri command instead
of pydoc).

= There are no special line terminators (except the usual newline).

m Strinn literals can <nan muiltinle linec like Puthan'< trinle-niinted <trinas

https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-
from-python,

https://www.ruby-lang.org/en/documentation/ruby-from-other-languages/to-ruby-from-python/

Porting from Python to Ruby

ary = [1, 2, 3]

print(f"length of the array is {len(ary)}")

for i1 in ary:
if 1 %2 ==20:
print(i * 2)
else:
print(i)

Can you port this Python code to Ruby?

Porting from Python to Ruby - Code amount

> tokei

Language i Code Comments Blanks

0
128
0
0
0
6

Autoconf

Makefile

Python
ReStructuredText
SVG

Plain Text

TOML

n

1
P
1
p
1
1
E
8
1
P
1

Total

~
(8]

Porting from Python to Ruby - How | ported it

m Keep the same structure as Python

= Carelessly changed may cause getting stuck

m Avoid porting asynchronous processing parts

= Difference of functionality

= My lack of knowledge

Porting from Python to Ruby - Built-in types, bytes

class Buffer:
def __init__(self, capacity: Optional[int] = 0, data: Optional[bytes] = None): ...

@property
def capacity(self) -> int: ...

@property
def data(self) -> bytes: ...
def data_slice(self, start: int, end: int) -> bytes: ...

https://github.com/aiortc/aioquic/blob/main/src/aioquic/ buffer.pyi

https://github.com/aiortc/aioquic/blob/main/src/aioquic/_buffer.pyi

Porting from Python to Ruby - Built-in types, bytes

m bytes in Python

= immutable (bytearray is not)

m String in Ruby
= mutable

= has Encoding (not only ASCII)

Porting from Python to Ruby - Built-in types, bytes

Python returns 3

len(b"\xe3\x81\x82")

Ruby returns 1 (return 3 if use String#bytesize)

"\xe3\x81\x82".length

"\xe3\x81\x82" .bytesize

Porting from Python to Ruby - Built-in types, enum

from enum import IntEnum
import pprint

class Color(IntEnum):
RED = 1
BLUE = 2
GREEN = 3

color = Color.RED
print(color)

Python

Porting from Python to Ruby - Built-in types, enum

class Color
RED =
BLUE = 2
GREEN = 3
end

color = Color::RED
puts color

Ruby

Porting from Python to Ruby - Built-in types, enum

from atoquic import tls
import pprint

ctx = tls.Context(is_client=True)
print(ctx._signature_algorithms[2])

pprint.pp(ctx._signature_algorithms[2])

"Oh! 1025 is the SignatureAlgorithm.RSA_PKCSI_SHA256 in TLS 1.3!"

Porting from Python to Ruby - Built-in types, tuple

import time
from atoquic.quic.connection import QuicConnection
from atoquic.quic.configuration import QuicConfiguration

conf QuicConfiguration(is_client=True)
conn QuicConnection(configuration=conf)

conn.connect(("1.2.3.4", 1234), now=time.time())

Python

Porting from Python to Ruby - Built-in types, tuple

require 'ratoqui
conf = Ratloquic::Quic::QuicCon
conn =

figuration.new(is_client: true)

Raioquic::Quic::Connection::QuicConnection.new(configuration: conf)

conn.connect(addr: ["1.2.3.4", 1234], now: Time.now.to_f)

Ruby

Porting from Python to Ruby - Code style

def on_ack_received(self, space, ack_rangeset, ack_delay, now) -> None:

Update metrics as the result of an ACK being received.
is_ack_eliciting = False

largest_acked = ack_rangeset.bounds().stop - 1
largest_newly_acked = None

largest_sent_time None

if largest_acked > space.largest_acked_packet:
space.largest_acked_packet = largest_acked

for packet_number in sorted(space.sent_packets.keys()):
if packet_number > largest_acked:
break
if packet_number in ack_rangeset:

for handler, args in packet.delivery_handlers:
handler(QuicDeliveryState.ACKED, *args)

Python

Porting from Python to Ruby - Code style

ack_ranges

.delivery_handler ch do |handler|

acketButlder: :QuicDeliveryState

handler[0]&. name

n :on_data_deliver
handler[0].call(deliver elivery, start: handler[1][0], stop: handler[1][1])

n_ack_delivery
handler[0].call(delivery: de space: handler[1][0], highest_acked: handler[1][1])
N tion_id_delivery
handler[0] delivery: delivery, connection_id: handler[1][0])
n :on_hand: one_de y, on_r Livery, nding_deli
handler[0].call(delivery: delivery)
n_ping_delivery
r[0].call(de elivery, uids: handler[1][0])
en :on_connection_Llimit_delivery
handler[0].call(delive ivery, limit: handler[1][0])
hen :on_retire_connection_id_delivery
handler[0].call(delive ivery, sequence_number: handl

ais I E , handler[0]

Ruby

Porting from Python to Ruby - Code style

def _write_ping_frame(self, builder, uids = [], comment=
builder.start_frame(
QuicFrameType.PING,
capacity=PING_FRAME_CAPACITY,
handler=self._on_ping_delivery,
handler_args=(tuple(uids),),

logger.debug(

nding PING%s in packet %d",

(%s)" % comment if comment else ""
builder.packet_number,

callback register in Python

Porting from Python to Ruby - Library API

Not only language themselves but also API differences.
Using OpenSSL functionality from...
m Python (aioquic)

= pyca/cryptography
= https://github.com/pyca/cryptography

= Ruby
= openssl gem
= https://github.com/ruby/openssl

(to implement TLS 1.3)

https://github.com/pyca/cryptography
https://github.com/ruby/openssl

Porting from Python to Ruby - Library API

1. looked for API calls to pyca/cryptography's
2. find which C API of OpenSSL it corresponds to
3. find how it is wrapped in the openssl gem

4. port it to a Ruby API call in the openssl gem

Porting from Python to Ruby - Library APl example

from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.serialization import Encoding, PublicFormat

peerl_ec_private_key = ec.generate_private_key(ec.SECP256R1)
peerl_ec_public_key = peerl_ec_private_key.public_key()
encoded_peerl_pubkey = peerl_ec_public_key.public_bytes(Encoding.X962, PublicFormat.UncompressedPoint)

peer2_ec_private_key = ec.generate_private_key(ec.SECP256R1)
peer2_ec_public_key = peer2_ec_private_key.public_key()
encoded_peer2_pubkey = peer2_ec_public_key.public_bytes(Encoding.X962, PublicFormat.UncompressedPoint)

decoded_peer2_public_key = ec.EllipticCurvePublicKey.from_encoded_point(ec.SECP256R1(), encoded_peer2_pubkey)
peerl_shared_key = \
peerl_ec_private_key.exchange(ec.ECDH(), decoded_peer2_public_key)

decoded_peerl_public_key = ec.EllipticCurvePublicKey.from_encoded_point(ec.SECP256R1(), encoded_peerl_pubkey)
peer2_shared_key = \
peer2_ec_private_key.exchange(ec.ECDH(), decoded_peerl_public_key)

print(peerl_shared_key)
print(peer2_shared_key)
print(peerl_shared_key == peer2_shared_key)

Porting from Python to Ruby - Library APl example

require 'openssl'

peerl_ec = OpenSSL::PKey::EC.generate("prime256v1")
peerl_ec_public_key = peerl_ec.public_key
encoded_peerl_public_key = peerl_ec_public_key.to_octet_string(:uncompressed)

peer2_ec = OpenSSL::PKey::EC.generate("prime256v1")
peer2_ec_public_key = peer2_ec.public_key
encoded_peer2_public_key = peer2_ec_public_key.to_octet_string(:uncompressed)

group = OpenSSL: :PKey::EC::Group.new("prime256v1")
decoded_peer2_public_key = OpenSSL::PKey::EC::Point.new(group, encoded_peer2_public_key)
peerl_shared_key = peerl_ec.dh_compute_key(decoded_peer2_public_key)

decoded_peerl_public_key = OpenSSL::PKey::EC::Point.new(group, encoded_peerl_public_key)
peer2_shared_key = peer2_ec.dh_compute_key(decoded_peerl_public_key)

pp peerl_shared_key
pp peer2_shared_key
pp peerl_shared_key == peer2_shared_key

rom Python to Ruby - Result

> tokei .

Language i Comments Blanks

BASH 2
Go

Python

Rakefile

Ruby

Markdown
|- Ruby
|- Shell
(Total)

Total

>1

Porting from Python to Ruby - Demo

Porting from Python to Ruby - Insights

1. QUIC IS VERY DIFFICULT
2. TLS 1.3 IS ALSO VERY DIFFICULT

3. "writing once" empowers me

Porting from Python to Ruby - "Raioquic"

unasuke/raioquic
A ©o ¢ 13 %0 (p)

https://github.com/unasuke/raioquic

https://github.com/unasuke/raioquic

Rubyish QUIC implementation

conf = Ratoquic::Qu new(is_client
ify_locations(cafile: "localhost-unasuk

Loquic: :Quic: :Connect ion: :QuicConnection. new(configuration:

client. connect(addr now. to_f)

new

3.times do
client.datagrams_to_send(now: .now. to_f).each do |data, addr
s.send(data,

data, addr = s.recvfrom(655
client. re datagran(daf
ev = client.next

pp ev

ailable_str

strean_data stream

now. to.
send(data, 0)

data, addr = s.recvfron(65536

datagran(data: d , now: .now. to_f)

ent

Future of my implementation - How to make it Rubyish?

To make implementation Rubyish...
1. Use suitable features to Ruby (internal)

® tuple ~» class or dedicated struct or data

® bytes » 10::Buffer, not String

2. Adapt to existing API styles (public API)

Future of my implementation - TLS in Ruby

require 'net/http’

url = URI.parse('https://www.example.com/index.html")

req = Net::HTTP.new(url.host, url.port)
req.use_ssl = true

res = req.get(url.path)

puts res.body

High level API (use Net:HTTP)

Future of my implementation - TLS in Ruby

require 'socket'
require 'openssl'

soc = TCPSocket.new('www.example.com', 443)

ssl = OpenSSL::SSL::SSLSocket.new(soc)

ssl.connect

ssl.post_connection_check('www.example.com')

raise "verification error" if ssl.verify_result != OpenSSL::X509::V_0K

ssl.write('hoge')
print ssl.peer_cert.to_text

ssl.close
soc.close

Low level API (use OpenSSL::SSL::SSLSocket)

Future of my implementation - Faraday style

res = QuicClient.get("https://quic.nginx.org/")

Very high level API

Future of my implementation - Net::HTTP style

require 'net/http/quic'

url = URI.parse('https://cloudflare-quic.com/")

req = Net::HTTP::Quic.new(url.host, url.port)
reqg.use_ssl = true

res = reqg.get(url.path)

puts res.body

Net:HTTP style API

Future of my implementation - Vaporware

m The APIs like I've been talking about, doesn't exist yet
= next year...?

=um...

Future of my implementation - Raise your hand time!

Are you running some Rails apps on production env?

I I -

Future of my implementation - Raise your hand time!

Are you running some Rails apps on production without reverse
proxies or load balancers?

I I -

Future of my implementation - Speed!

m Most Rails app is behind of web server (load balancer)

= TLS termination is high cost

= (asset delivery)

Future of my implementation - QUIC diagram (again!)

HTTP semantics

Header compression
(HPACK)

HTTP/2

Prioritization

Server push

Stream multiplexing

Authentication Key negotiation

TLS

Session resumption / 8-RTT

Encryption/decryption

Congestion T(CP gefiapiity

control

Connection oriented

Port numbers

Header compression
(QPACK)

HTTP/3

Prioritization

Server push

Stream multiplexing

Authentication Key negotiation

TLS

Session resumption / 9-RTT

Encryption/decryption

Connection migration

congestion Q| JTC retiabiity

control

Connection oriented

UDP

Port numbers

IPv4 / IPV6

image from https://github.com/rmarx/h3-protocol-stack

https://github.com/rmarx/h3-protocol-stack

Future of my implementation - Faster language impls

m Cor Rustor..

= socketry/protocol-quic gem wraps ngtcp2

= created by Samuel-san (ioquatix)

"Unleashing the Power of Asynchronous HTTP with Ruby" in Day 3

= ngtcp2/ngtcp2 written by C

https://github.com/socketry/protocol-quic
https://github.com/ngtcp2/ngtcp2

Future of my implementation - ngtcp2 used by curl

[# master ~ curl/docs/HTTP3.md M Top

‘ Preview | Code Blame 354 lines (246 loc) - 12.2 KB Raw D & 2 - =

ngtcp2 version

Building curl with ngtcp2 involves 3 components: ngtcp2 itself, nghttp3 and a QUIC supporting
TLS library. The supported TLS libraries are covered below.

For now, ngtcp2 and nghttp3 are still experimental which means their evolution bring breaking
changes. Therefore, the proper version of both libraries need to be used when building curl. These are

e ngtcp2 :v0.13.1
e nghttp3 :v0.10.0

https://github.com/curl/curl/blob/master/docs/HTTP3.md

https://github.com/curl/curl/blob/master/docs/HTTP3.md

Future of my implementation - Worth of Pure Ruby

m Research
= |mplementations that make it easy to change internal behavior
are useful
m QUIC implementation itself
= Helping QUIC implementation itself

= e.g. Build data for test its behavior

Future of my implementation - Motivation

© 08 () mplementations - quicwoas x |+ .
<« C @ github, L B ® 0607z i
B quicwg / base-drafts pubic 0 Notifications % Fork 214 7 star 16k

<> Code (Issues 2 Il Pullrequests 2 ® Actions [Projects 1 [0 Wiki @ Security | Insights

Implementations

Lucas Pardue edited this page on Apr 7 - 458 revisions

This wiki tracks known implementations of QUIC. See also our Tools listing. Current interop + Pages @
status; make sure you are looking at or editing the correct tab.

Please add your implementation below. Keep sorted alphabetically. There are three sections,
one for "IETF QUIC Transport", one for "HTTP/3C", and one for "QPACK". Entries may appear in
multiple sections e.g. where a stack provides both IETF QUIC Transport and HTTP/3, « Current "Implementation Draft’

« QUIC Implementations.

Top pages

Note

If you are working on a QUIC implementation, please consider joining the QUIC Developers

https://github.com/quicwg/base-drafts/wiki/Implementations

https://github.com/quicwg/base-drafts/wiki/Implementations

Summary

m Ported aioquic (Python) to Ruby

= Diffs from language features, library APl makes porting hard

= Ported impl could communicate other impls

m Creating Rubyish implementation

= Uses Ruby's built-in features
= Make it can apply existing idioms

® This may be where this implementation would be useful
m Research

= QUIC implementation itself

Acknowledgments

m Ruby Association
= For adopting my project

m Koichi Sasada-san

= a mentor of the porting project

m Kuwayama-san
= Author of tttlsl.3 gem

m Daisuke Aritomo a.k.a. osyoyu
= Adviser of this talk

