
Ruby, Ractor, QUIC

unasuke (Yusuke Nakamura)
RubyKaigi Takeout 2021

2021-09-11



Self introduction

Name: unasuke (Yusuke Nakamura)

Work: freelance Web app developer

OOParts (Cloud Gaming Service) backend dev

Itamae gem maintainer, Kaigi on Rails staff

 GitHub https://github.com/unasuke

 Mastodon https://mstdn.unasuke.com/@unasuke

 Twitter https://twitter.com/yu_suke1994

https://github.com/unasuke
https://mstdn.unasuke.com/@unasuke
https://twitter.com/yu_suke1994


Next generation Web

widespreading Web usage

Cloud Gaming

Video meeting

Streaming media

We want the Web to be faster!



Cloud Gaming requiement

"real-time bidirectional communication"

Send player's input to the game on the cloud machine1. 

The game render the input result2. 

Send result to the player's screen (web browser)3. 

Repeat the above process as soon as possible for comfortable game play.

(Same as remote working collaboration)



Way to real-time bidirectional communication on the Web

Now

WebRTC

WebSocket

Future?

WebTransport

a new server-client protocol over the HTTP/3

use UDP

status: draft → https://datatracker.ietf.org/group/webtrans/documents/

https://datatracker.ietf.org/group/webtrans/documents/


HTTP/3

A new hyper text transfer protocol (draft)

This document defines HTTP/3, a mapping of HTTP semantics over the
QUIC transport protocol

https://datatracker.ietf.org/doc/draft-ietf-quic-http/

"QUIC" ? What is this?

https://datatracker.ietf.org/doc/draft-ietf-quic-http/


QUIC

standardized at 2021-05-27 by IETF

More faster than HTTP/2

Using UDP, not TCP



Tweet by ko1

https://twitter.com/_ko1/status/1282963500583628800

https://twitter.com/_ko1/status/1282963500583628800


Tweet by ko1

two people

@_ko1 (Koichi Sasada)

Ruby core commiter

Ractor author

@kazuho (Kazuho Oku)

author of h2o

QUIC RFC contributor

Sounds interesting!



What, Why QUIC

HTTP uses TCP/IP

TCP is reliable, but slow

Oriented data transfer

Retransmission of lost packets

Congestion control

UDP is unreliable, but fast

realtime transfer e.g. audio



What, Why QUIC - TCP's problem

Three way handshake

additional TLS handshake (at secure communication)

Head-of-Line Blocking (HoLB)

QUIC is a new latency-reducing, reliable, and secure internet transport
protocol

https://www.fastly.com/blog/quic-is-now-rfc-9000

https://www.fastly.com/blog/quic-is-now-rfc-9000


Is there a benefit?

Why imprement QUIC on Ruby?

For my study and interest1. 

For Ractor

There are still few examples of Ractor

helps evaluation and improvement of Ractor

e.g. https://github.com/mame/optcarrot

2. 

https://github.com/mame/optcarrot


QUIC - Initial Packet (RFC9001 Appendix A)



QUIC - reading Initial Packet



QUIC - reading Initial Packet



QUIC - reading Initial Packet



QUIC - reading Initial Packet



QUIC - reading Initial Packet



QUIC - reading Initial Packet



n月刊ラムダノート Vol.2, No.1(2020)

#1 パケットの設計から見るQUIC（西田佳史）
https://www.lambdanote.com/collections/frontpage/products/nmonthly-vol-2-no-1-2020

https://www.lambdanote.com/collections/frontpage/products/nmonthly-vol-2-no-1-2020


QUIC - reading Initial Packet by Ruby



QUIC - reading Initial Packet by Ruby

It causes Ractor::IsolationError when use in not main Ractor



QUIC - reading Initial Packet by Ruby

I cannot read this, and ruby cannot read it bit by bit.



QUIC - reading Initial Packet by Ruby

How to read each "bit" in Ruby?

"A" ← 0x41 (ASCII-8BIT)
"A" ← 0b01000001 (ASCII-8BIT)
"A" → ？ → "01000001"



QUIC - reading Initial Packet by Ruby

Use "Array#pack", "String#unpack1"

"A".unpack1("B*") # => "01000001"
["01000001"].pack("B*") # => "A"

Now, we can each "bit" by Ruby!



Handling packet by Ractor

How do we handling UDP packet by Ractor?



Handling packet by Ractor - think about QPACK

QPACK (Header Compression for HTTP/3)

Static Table

"content-encoding gzip" (values that appear many times)

Dynamic Table

per client-server

e.g. user-agent

→ Create ractor per client that has a dynamic table state...



Handling packet by Ractor - UDP echo server by Ractor

3 classes

Server class

Router class

Connection class



UDP echo server by Ractor - Server class



UDP echo server by Ractor - Router class



UDP echo server by Ractor - Connection class



benchmarking by udpbench

https://github.com/unasuke/udpbench

Improvised UDP benchmark tool written Go.

Send-receive UDP packet that contain UUIDv4 from goroutines.

https://github.com/unasuke/udpbench


Result of benchmark UDP echo server by Ractor

$ ./udpbench --count 100 --parallelism 100
Total request count : 10000
Total request time : 10m48.446641s
Time per packets : 64.844664ms
Failed count : 0



simple UDP echo server



Result of benchmark simple UDP echo server

$ ./udpbench --count 100 --parallelism 100
Total request count : 10000
Total request time : 7.5696799s
Time per packets : 756.967µs
Failed count : 0

x85 faster than Ractor impl 



Let's decrypt QUIC packet in Ractor



Let's decrypt QUIC packet in Ractor

Failed by OpenSSL::Cipher.new 

Can OpenSSL rb_ext_ractor_safe(true) ...?



Wait, I heard about yesterday...

'Standard libralies are already ractor-safe' by ko1

I heard about that in "Ruby Committers vs the World" yesterday.



OpenSSL is `rb_ext_ractor_safe(true)`

Wow...



Conclusion

There are two problems

Libraies that cannot use in not main Ractor

useful gem → imprement myself (e.g. bindata)

core lib → DEEP DIVE to fix this (e.g. openssl)

Need many many code to imprement QUIC

Mozilla's Neqo : 50,000 LoC (Rust) https://github.com/mozilla/neqo

aioquic : 17,000 LoC (Python) https://github.com/aiortc/aioquic

Ruby : ?

https://github.com/mozilla/neqo
https://github.com/aiortc/aioquic

